[1] M. Ab´ert, On the probability of satisfying a word in a group, J. Group Theory, 9 no. 5 (2006) 685–694.
[2] C. Ashurst, Fibres of words in finite groups, a probabilistic approach, University of Bath, 2012.
[3] R. D. Camina, W. L. Cocke and A. Thillaisundaram, The Amit-Ashurst conjecture for finite metacyclic p-groups, Eur. J. Math., 9 no. 3 (2023) 13 pp.
[4] R. D. Camina, A. Iniguez and A. Thillaisundaram, Word problems for finite nilpotent groups, Arch. Math. (Basel), 115 (2020) no. 6 599–609.
[5] W. Cocke, Size of free groups in varieties generated by fnite groups, Internat. J. Algebra Comput., 29 (2019) no. 8 1419–1430.
[6] W. Cocke and M.-Ch. Ho, On the symmetry of images of word maps in groups, Comm. Algebra, 46 (2018) no. 2 756–763.
[7] W. Cocke and D. Skabelund, The free spectrum of A5, Internat. J. Algebra Comput., 30 (2020) no. 4 685–691.
[8] R. Guralnick and P. Shumyatsky, On rational and concise words, J. Algebra, 429 (2015) 213–217.
[9] G. Higman,The orders of relatively free groups, Proc. Internat. Conf. Theory of Groups (Canberra, 1965), Gordon and Breach, New York-London-Paris, 1967 153–165.
[10] A. I˜niguez and J. Sangroniz, Words and characters in finite p-groups, J. Algebra, 485 (2017) 230–246.
[11] D. Kahrobaei, A. Tortora and M. Tota, Multilinear cryptography using nilpotent groups, Elementary theory of groups and group rings, and related topics, De Gruyter Proc. Math., De Gruyter, Berlin, 2020 127–133.
[12] , A closer look at the multilinear cryptography using nilpotent groups, Int. J. Comput. Math. Comput. Syst. Theory, 7 (2022) no. 1 63–67.
[13] D. Kaur, H. Kishnani and A. Kulshrestha, Word images and their impostors in finite nilpotent groups, (2022) 14 pp. arXiv preprint arXiv:2205.15369.
[14] H. Kishnani and A. Kulshrestha, Automorphic word maps and amit–ashurst conjecture, (2023) 10 pp. arXivpreprint arXiv:2309.09010, 2023.
[15] L. G. Kov´acs, Free groups in a dihedral variety, Proc. Roy. Irish Acad. Sect. A, 89 (1989) no. 1 115–117.
[16] M. Levy, On the probability of satisfying a word in nilpotent groups of class 2, (2011). arXiv preprint arXiv:1101.4286.
[17] M. W. Liebeck, E. A. O’Brien, A. Shalev and P. H. Tiep, The Ore conjecture, J. Eur. Math. Soc. (JEMS), 12 (2010) no. 4 939–1008.
[18] A. Lubotzky, Images of word maps in finite simple groups, Glasg. Math. J., 56 (2014) no. 2 465–469.
[19] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Presentations of groups in terms of generators and relations, Second revised edition, Dover Publications, Inc., New York, 1976.
[20] H. Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967.
[21] N. Nikolov and D. Segal, A characterization of finite soluble groups, Bull. Lond. Math. Soc., 39 (2007) no. 2 209–213.
[22] A. Ju. Olˇsanski˘ı, The orders of free groups of locally finite varieties, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973) 89–94.
[23] D. Segal, Words: notes on verbal width in groups, London Mathematical Society Lecture Note Series, 361, Cambridge University Press, Cambridge, 2009.
[24] S. Singh and A. Satyanarayana Reddy, Achiral words, (2023). arXiv preprint arXiv:2302.02761.
[25] J. S. Wilson, Finite axiomatization of finite soluble groups, J. London Math. Soc. (2), 74 (2006) no. 3 566–582.