On the theory and generalization of $\Sigma$-groups

Document Type : Research Paper

Author

College of Applied Industrial Technology Jazan University, Jazan- P.O. Box 2097, Kingdom of Saudi Arabia

Abstract

In this work we present a systematic study of $n$-layered modules which are closely related to $\Sigma$-modules. For each integer $n \geq 1$ we prove some results for $n$-layered modules concerning when $\Sigma$-modules are direct sum of countably generated modules. Moreover, we discover additional restriction which leads to coinciding of $n$-layered modules and $m$-layered modules for $n>m$.

Keywords

Main Subjects


[1] K. Benabdallah and S. Singh, On torsion abelian groups like modules, Lect. Notes Math., 1006 (1983) 639–653.
[2] P. Danchev, Primary abelian n-Σ-groups, translated from Lith. Math. J., 47 no. 2 (2007) 155–162.
[3] P. Danchev, A note on primary abelian n-Σ-groups, New Zealand J. Math., 36 (2007) 159–161.
[4] P. Danchev, Note on elongations of summable p-groups by pω+n -projective p-groups II, Rend. Istit. Mat. Univ. Trieste, 39 no. 1-2 (2007) 387–394.
[5] P. Danchev, Primary abelian n-Σ-groups revisited, Math. Pannon., 22 no. 1 (2011) 85–93.
[6] P. Danchev and P. W. Keef, Generalized Wallace theorems, Math. Scand., 104 no. 1 (2009) 33–50.
[7] P. Danchev and P. W. Keef, Nice elongations of primary abelian groups, Publ. Mat., 54 no. 2 (2010) 317–339.
[8] P. Danchev and P. W. Keef, An application of set theory to ω + n-totally pω+n -projective primary abelian groups, Mediterr. J. Math., 8 no. 4 (2011) 525–542.
[9] L. Fuchs, Infinite abelian groups, Vol. II, Pure and Applied Mathematics, 36, Academic Press, New York, 1973.
[10] A. Hasan, On essentially finitely indecomposable QT AG-modules, Afr. Mat., 27 no. 1-2 (2016) 79–85.
[11] A. Hasan and Rafiquddin, On completeness in QT AG-modules, Palest. J. Math., 11 no. 2 (2022) 335–341.
[12] P. w. Keef, On iterated torsion products of abelian p-groups, Rocky Mountain J. Math., 21 no. 3 (1991) 1035–1055.
[13] M. Z. Khan, On a generalization of a theorem of Erdely, Tamkang J. Math., 9 no. 2 (1978) 145–149.
[14] M. Z. Khan, Modules behaving like torsion abelian groups II, Math. Japon., 23 no. 5 (1979) 509–516.
[15] A. Mehdi, M. Y. Abbasi and F. Mehdi, On some structure theorems of QT AG-modules of countable Ulm type, South East Asian J. Math. Math. Sci., 3 no. 3 (2005) 103–110.
[16] A. Mehdi, M. Y. Abbasi and F. Mehdi, Nice decomposition series and rich modules, South East Asian J. Math. Math. Sci., 4 no. 1 (2005) 1–6.
[17] A. Mehdi, M. Y. Abbasi and F. Mehdi, On (ω + n)-projective modules, Ganita Sandesh, 20 no. 1 (2006) 27–32.
[18] A. Mehdi, F. Sikander and S. A. R. K. Naji, A note on elongations of summable QT AG-modules, The Scientific World Journal, 2013 (2013) 3 pp.
[19] H. A. Mehran and S. Singh, Ulm-Kaplansky invariants for T AG-modules, Comm. Algebra, 13 no. 2 (1985) 355–373.
[20] H. A. Mehran and S. Singh, On σ-pure submodules of QT AG-modules, Arch. Math. (Basel), 46 no. 6 (1986) 501–510.
[21] S. A. R. K. Naji, A study of different structures in QT AG-modules, Ph.D. thesis, Aligarh Muslim University, (2010).
[22] F. Sikander, Note on nice elongations of QT AG-modules, Int. J. Math. Stat. Invent, 7 no. 1 (2019) 34–37.
[23] F. Sikander and T. Fatima, On totally projective QT AG-modules, Journal of Taibah University for Science, 13 no. 1 (2019) 892–896.
[24] F. Sikander and A. Hasan, Some aspects of (ω + 1)-projectives, Afr. Mat., 32 no. 6 (2021) 1033–1041.
[25] F. Sikander, A. Hasan and A. Mehdi, On n-layered QT AG-modules, Bull. Math. Sci., 4 no. 2 (2014) 199–208.
[26] S. Singh, Some decomposition theorems in abelian groups and their generalizations, Ring theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976), Lect. Notes Pure Appl. Math., Vol. 25, Dekker, New York-Basel, 25 (1977) 183–189.
[27] S. Singh, Abelian groups like modules, Acta Math. Hungar., 50 no. 1-2 (1987) 85–95.
[28] S. Singh and M. Z. Khan, T AG-modules with complement submodules h-pure, Internat. J. Math. Math. Sci., 21 no. 4 (1998) 801–814.