GAP (2009) Groups, Algorithms and Programming Version 4.4.12.
\href{http://www.gap-system.org}{www.gap-system.org}. W. Gaschutz (1979). Lectures on subgroups of Sylow type in
finite soluble groups. Notes of Pure Mathematics, Australian
National University, Canberra. 11 B. Huppert (1967). Endliche Gruppen I. Berlin, Heidelberg, New York. V. N. Kniahina and V. S. Monakhov (18 May 2011). Finite groups with
$\mathbb P$-subnormal 2-maximal subgroups. arxiv.org e-Print, \href{http://arxiv.org/pdf/1105.3663.pdf}{arxiv.org/pdf/1105.3663.pdf}
archive. V. N. Kniahina and V. S. Monakhov (18 Nov 2011). Finite groups with
$\mathbb P$-subnormal primary cyclic subgroups. arxiv.org e-Print
archive, \href{http://arxiv.org/pdf/1110.4720}{arxiv.org/pdf/1110.4720}. V. S. Monakhov (1995). Finite groups with a given set of Schmidt subgroups. Math. Notes. 58 (5), 1183-1186 V. T. Nagrebecki (1975). Finite minimal non-supersolvable groups. In Finite groups (Proc. Gomel Sem.)(Russian), Nauka i Tehnika, Minsk. , 104-108 A. F. Vasilyev, T. I. Vasilyeva and V. N. Tyutyanov (2010). On the finite groups of supersoluble type. Sib. Math. J.. 51 (6), 1004-1012
Kniahina, V., & Monakhov, V. (2013). On supersolvability of finite groups with ℙ-subnormal subgroups. International Journal of Group Theory, 2(4), 21-29. doi: 10.22108/ijgt.2013.2835
MLA
Viktoryia Kniahina; Victor Monakhov. "On supersolvability of finite groups with ℙ-subnormal subgroups". International Journal of Group Theory, 2, 4, 2013, 21-29. doi: 10.22108/ijgt.2013.2835
HARVARD
Kniahina, V., Monakhov, V. (2013). 'On supersolvability of finite groups with ℙ-subnormal subgroups', International Journal of Group Theory, 2(4), pp. 21-29. doi: 10.22108/ijgt.2013.2835
VANCOUVER
Kniahina, V., Monakhov, V. On supersolvability of finite groups with ℙ-subnormal subgroups. International Journal of Group Theory, 2013; 2(4): 21-29. doi: 10.22108/ijgt.2013.2835