Let $G$ be a finite group and $d_2(G)$ denotes the probability that $[x,y,y]=1$ for randomly chosen elements $x,y$ of $G$. We will obtain lower and upper bounds for $d_2(G)$ in the case where the sets $E_G(x)=\{y\in G:[y,x,x]=1\}$ are subgroups of $G$ for all $x\in G$. Also the given examples illustrate that all the bounds are sharp.
A. M. Alghamdi and F. G. Russo (2012). A generalization of the probability that the commutator of two group elements is equal to a given element. Bull. Iranian Math. Soc.. 38, 973-986 S. Bachmuth and J. Lewin (1964). The Jacobi identity in groups. Math. Z.. 83, 170-176 C. Bussman and D. A. Jackson (2012). Another law for $3$-metabelian groups. Glasg. Math. J.. 54 (3), 627-628 P. Erd\"{o}s and P. Turan (1968). On some problems of statistical group theory. Acta Math. Acad. Sci. Hung.. 19, 413-435 A. Erfanian, R. Barzegar and M. Farrokhi D. G. Finite groups with three relative commutativity degrees. to appear in Bull. Iranian Math. Soc.. A. Erfanian, R. Rezaei and P. Lescot (2007). On the relative commutativity degree of a subgroup of a finite group. Comm. Algebra. 35, 4183-4197 M. Farrokhi D. G. and M. R. R. Moghaddam On groups satisfying a symmetric Engel word. Submitted. The GAP Group (2008). GAP-Groups, Algorithms and Programming, Version 4.4.12. \href{http://www.gap-system.org}{www.gap-system.org}. R. M. Guralnick and G. R. Robinson (2006). On the commuting probability in finite groups. J. Algebra. 300, 509-528 W. H. Gustafson (1973). What is the probability that two groups elements commute?. Amer. Math. Monthly. 80, 1031-1034 P. Hegarty (2013). Limit points in the range of the commuting probability function on finite groups. J. Group Theory. 16 (2), 235-247 W. P. Kappe (1961). Die A-norm einer gruppe. Illinois J. Math.. 5, 187-197 P. Lescot (1995). Isoclinism classes and commutativity degrees of finite groups. J. Algebra. 177, 847-869 I. D. Macdonald (1961). On certain varieties of groups. Math. Z.. 76, 270-282 I. D. Macdonald (1964). Another law for the $3$-metabelian groups. J. Austral. Math. Soc.. 6, 452-453 B. H. Neumann (1956). On a conjecture of Hanna Neumann. Proc. Glasgow Math. Assoc.. 3, 13-17 G. J. Sherman (1975). What is the probability an automorphism fixes a group element?. Amer. Math. Monthly. 82, 261-264
Erfanian, A., & Farrokhi Derakhshandeh Ghouchan, M. (2013). On the probability of being a 2-Engel group. International Journal of Group Theory, 2(4), 31-38. doi: 10.22108/ijgt.2013.2836
MLA
Ahmad Erfanian; Mohammad Farrokhi Derakhshandeh Ghouchan. "On the probability of being a 2-Engel group". International Journal of Group Theory, 2, 4, 2013, 31-38. doi: 10.22108/ijgt.2013.2836
HARVARD
Erfanian, A., Farrokhi Derakhshandeh Ghouchan, M. (2013). 'On the probability of being a 2-Engel group', International Journal of Group Theory, 2(4), pp. 31-38. doi: 10.22108/ijgt.2013.2836
VANCOUVER
Erfanian, A., Farrokhi Derakhshandeh Ghouchan, M. On the probability of being a 2-Engel group. International Journal of Group Theory, 2013; 2(4): 31-38. doi: 10.22108/ijgt.2013.2836