E. Artin and J. Tate (2009). Class Field Theory. Second Edition, AMS Chelsea Publishing. M. Asada (1985). On unramified Galois extensions over maximum abelian extensions of algebraic number fields. Math. Ann.. 270 (4), 477-487 H.-J. Bartels (1978). Zur Galois Kohomologie definiter arithmetischer Gruppen. J. reine angew. Math.. 298, 89-97 H.-J. Bartels and D. A. Malinin (2006). Finite Galois stable subgroups of GL_n, In: Noncommutative Algebra and
Geometry. Edited by C. de Concini, F. van Oystaeyen, N. Vavilov and A. Yakovlev, Lect. Notes Pure Appl. Math.. 243, 1-22 H.-J. Bartels and D. A. Malinin (2009). On Finite Galois
stable subgroups of $GL_n$ in some relative extensions of number
fields. J. Algebra Appl.. 8, 493-503 H.-J. Bartels and D. A. Malinin Finite Galois stable subgroups of GL_n over local fields. preprint. A. Borel (1969). Introduction aux groupes arithmetiques. Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, Hermann, Paris, 125 pp. (1341) B. Burgisser (1983). On the Projective Class Group of Arithmetic Groups. Math. Z.. 184, 339-357 G. Cardona (2006). Representations of $G_k$-groups and twists of the genus two curve y^2=x^5-x. J. Algebra. 303, 707-721 J. W. S. Cassels, A. Frohlich and (ed.) (1967). Algebraic Number Theory. Proceedings of an Instructional Conference Organized by the London Mathematical Society (Nato Advanced Study Institute) with the support of the Inter national Mathematical Union. Edited by J. W. S. Cassels and A. Frohlich Academic Press, London. G. Cliff, J. Ritter and A. Weiss (1992). Group representations and integrality. J. Reine Angew. Math.. 426, 193-202 J. W. S. Cassels (1978). Rational quadratic forms. London Mathematical Society Monographs, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, London--New York. 13 S. D. Cohen (1979). The distribution of the Galois groups of integral polynomials. Illinois J. Math.. 23, 135-152 C. W. Curtis and I. Reiner (1962). Representation theory of finite groups and associative algebras. Interscience, New York. P. G. Lejeune Dirichlet (1968). Vorlesungen uber Zahlentheorie. (German) Herausgegeben und mit Zus\"{a}tzen versehen von R. Dedekind. Vierte, umgearbeitete und vermehrte Auflage Chelsea Publishing Co., New York. W. Feit (1997). Finite linear groups and theorems of Minkowski and Schur. Proc. Amer. Math. Soc.. 125, 1259-1262 J.-M. Fontaine (1985). Il n'y a pas de variete abelienne sur Bbb Z. Invent. Math.. 81, 515-538 P. X. Gallagher (1973). The large sieve and probabilistic Galois theory. Analytic number theory (Proc. Sympos. Pure Math., St. Louis Univ., St. Louis, Mo. 1972), Amer. Math. Soc., Providence, R.I. XXIV, 91-101 F. R. Gantmakher (1959). The theory of matrices. Translated from the Russian by K. A. Hirsch, translation. AMS Chelsea Publishing, Providence, RI. 1 G. H. Hardy and E. M. Wright (1975). An introduction to the theory of numbers. The fourth edition, Oxford University Press, Oxford. W. Knapp and P. Schmidt (1997). An extension theorem for integral representations. J. Austral. Math. Soc. Ser. A. 63, 1-15 H. W. Knohloch (1955). Zum Hilbertschen Irreduzibilitat. Abh. Math. Sem. Hamburg. 19, 176-190 H. W. Knobloch (1956). Die Seltenheit der reduziblen
Polynome. Jber. Deutch. Math. Verein., Abt. 1. 59, 12-19 C. R. Leedham-Green and W. Plesken (1986). Some remarks
on Sylow subgroups of general linear groups. Math. Z.. 191, 529-535 G. Levitt and J.-L. Nicolas (1998). On the maximum order
of torsion elements in GL (n, Z) and Aut (F_n). J. Algebra. 208, 630-642 D. A. Malinin (1996). Integral representations of finite groups with Galois action. (Russian) Dokl. Akad. Nauk. 349, 303-305 D. A. Malinin (2001). Galois stability for integral representations of finite groups. (Russian) Algebra i Analiz, (2000) 106--145, translation in St. Petersburg Math. J.. 12 (3), 423-449 D. A. Malinin (2002). On the existence of finite Galois
stable groups over integers in unramified extensions of number
fields. Publ. Mathem. Debrecen. 60 (1-2), 179-191 D. A. Malinin (2003). Galois stability, integrality and realization fields for representations of finite Abelian groups. Algebr. Represent. Theory. 6 (2), 215-237 D. A. Malinin (2008). Some integral representations of
finite groups and their arithmetic applications. In: Algebraic Geometry and Its Applications, World Sci. Publ., Hackensack, NJ. , 467-480 D. A. Malinin (2009). Finite arithmetic groups: a monograph. Minsk. D. A. Malinin (1993). On integral representations of finite nilpotent groups. Vestnik Beloruss. State Univ. Ser. 1, nr. 1. , 27-29 D. A. Malinin (1999). Integral representations of p-groups of a given class of nilpotency over local fields. (Russian) Algebra i Analiz 10 no. 1 (1998) 58--67, translation in St. Petersburg Math. J.. 10 (1), 45-52 D. A. Malinin (1990). On integral representations of finite p-groups over local fields. Dokl. Akad. Nauk USSR, 309 (1989) 1060--1063, (Russian) English transl in Sov. Math. Dokl.. 40, 619-622 H. Minkowski (1887). Uber den arithmetischen Begriff
der Aquivalenz und uber die endlichen Gruppen linearer
ganzzahliger Substitutionen. J. reine angew. Math.. 1887 (100), 449-458 H. Minkowski (1887). Zur Theorie der positiven
quadratischen Formen. J. Reine Angew. Math.. 1887 (101), 196-202 H. Minkowski (1910). Geometrie der Zahlen. Teubner, Leipzig--Berlin. W. Narkiewicz (1990). Elementary and analytic theory of
algebraic numbers. Second edition, Springer-Verlag,
Berlin, PWN -- Polish Scientific Publishers, Warsaw. J. Ritter and A. Weiss (1992). Galois action on
integral representations. J. London Math. Soc. (2). 46, 411-431 J. Ritter and A. Weiss (1992). Regulators and
Galois stability. Math. Nachr.. 158, 27-41 P. Roquette (1958). Realisierung von Darstellungen endlicher nilpotenter Gruppen. Arch. Math. (Basel). 9, 241-250 J.-P. Serre (1962). Corps locaux. (French) Publications de l'Institut de Mathématique de l'Université de Nancago, VIII Actualités Sci. Indust., Hermann, Paris, 243 pp. (1296) J.-P. Serre (2007). Bounds for the orders of the finite subgroups of G(k). Group representation theory, EPFL Press, Lausanne. , 405-450 C. Soule (2006). An introduction to arithmetic
groups. Frontiers in number theory, physics,
and geometry. II, Springer, Berlin. , 247-276 D. A. Suprunenko and R. I. Tyshkevich (1968). Commutative Matrices. Academic Press, New York and London. B. L. Van der Waerden (1934). Die Seltenheit der
reduziblen Gleichungen mit Affekt. Math. Ann.. 109, 13-16 L. C. Washington (1997). Introduction to Cyclotomic
Fields. second edition, Springer-Verlag, New York, Berlin,
Heidelberg. 83 A. Weiss (1988). Rigidity of p-adic p-torsion. Ann. of Math.. 127, 317-322 A. E. Zalesskii (1981). Linear groups. Russ. Math. Surv.. 36, 63-128 A. E. Zalesskii (1983). Linear groups, Algebra. Topology. Geometry, Itogi Nauki i Tekhniki. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow. 21, 135-182 P. H. Tiep and A. E. Zalesskii (2000). Some aspects of finite linear groups: A survey. J. Math. Sci.. 100, 1893-1914