[1] E. Acri and M. Bonatto, Skew braces of size pq, Comm. Algebra, 48 no. 5 (2020) 1872–1881.
[2] D. Bachiller, Classification of braces of order p3 , J. Pure Appl. Algebra, 219 no. 8 (2015) 3568–3603.
[3] F. CedoĢ, A. Smoktunowicz, and L. Vendramin, Skew left braces of nilpotent type, Proc. Lond. Math. Soc. (3), 118 no. 6 (2019) 1367–1392.
[4] L. Guarnieri and L. Vendramin, Skew braces and the Yang-Baxter equation, Math. Comp., 86 no. 307 (2017) 2519–2534.
[5] E. Jespers, L. Kubat, A. Van Antwerpen, and L. Vendramin, Factorizations of skew braces, Math. Ann., 375 no. 3-4 (2019) 1649–1663.
[6] E. Jespers, A. Van Antwerpen, and L. Vendramin, Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation, Commun. Contemp. Math., 25 no. 9 (2023) Paper No. 2250064, 20 pp.
[7] A. Koch and P. J. Truman, Opposite skew left braces and applications, J. Algebra, 546 (2020) 218–235.
[8] T. Letourmy and L. Vendramin, Isoclinism of skew braces, Bull. Lond. Math. Soc., 55 no. 6 (2023) 2891–2906.
[9] T. Letourmy and L. Vendramin, Schur covers of skew braces, J. Algebra, 644 (2024) 609–654.
[10] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307 no. 1 (2007) 153–170.
[11] C. Tsang, A generalization of Ito’s theorem to skew braces, J. Algebra, 642 (2024) 367–399.
[12] P. Webb, A course in finite group representation theory, Cambridge Studies in Advanced Mathematics, 161 Cambridge University Press, Cambridge, 2016.
[13] H. Zhu, The construction of braided tensor categories from Hopf braces, Linear Multilinear Algebra, 70 no. 16 (2022) 3171–3188.