[1] A. T. Benjamin and J. J. Quinn, Proofs that really count. The art of combinatorial proof, The Dolciani Mathematical Expositions, 27, Mathematical Association of America, Washington, DC, 2003.
[2] F. Breuer,A note on a paper by H. Glaser and G. Sch¨offl, Fibonacci Quart., 36 no. 5 (1998) 463–466.
[3] F. Breuer, Ducci sequences over abelian groups, Comm. Algebra, 27 no. 12 (1999) 5999–6013.
[4] F. Breuer, Ducci sequences and cyclotomic fields, J. Difference Equ. Appl., 16 no. 7 (2010) 847–862.
[5] R. Brown and J. L. Merzel, The length of Ducci’s four-number game, Rocky Mountain J. Math., 37 no. 1 (2007) 45–65.
[6] P. Cameron, Combinatorics: topics, techniques, algorithms, Cambridge University Press, Cambridge, 1994.
[7] M. Chamberland, Unbounded Ducci sequences, J. Difference Equ. Appl., 9 no. 10 (2003) 887–895.
[8] B. Dular, Cycles of sums of integers, Fibonacci Quart., 58 no. 2 (2020) 126–139.
[9] A. Ehrlich, Periods in Ducci’s n-number game of differences, Fibonacci Quart., 28 no. 4 (1990) 302–305.
[10] B. Freedman, The four number game, Scripta Mathematica, 14 (1948) 35–47.
[11] H. Glaser and G. Sch¨offl, Ducci-sequences and Pascal’s triangle, Fibonacci Quart., 33 no. 4 (1995) 313–324.
[12] M. L. Lewis and S. M. Tefft, The Period of Ducci Cycles on Z2l for Tuples of Length 2k, Submitted for Publication, , 2024.
[13] A. L. Furno, Cycles of differences of integers, J. Number Theory, 13 no. 2 (1981) 255–261.
[14] M. Misiurewicz and A. Schinzel, On n numbers on a circle, Hardy-Ramanujan J., 11 (1988) 30–39.
[15] F. B. Wong, Ducci processes, Fibonacci Quart., 20 no. 2 (1982) 97–105.