Paraunitary matrices and group rings

Document Type : Research Paper

Authors

1 NUI, Galway

2 National University of Ireland Galway

Abstract

Design methods for paraunitary matrices from complete orthogonal sets of idempotents and related matrix structures are presented. These include techniques for designing non-separable multidimensional paraunitary matrices. Properties of the structures are obtained and proofs given. Paraunitary matrices play a central role in signal processing, in particular in the areas of filterbanks and wavelets.

Keywords

Main Subjects


O. M. Baksalary, D. S. Bernstein and G. Trenkler (2010). On the equality between rank and trace of an idempotent matrix. Appl. Math. Comput.. 217, 4076-4080 A. Cohen and I. Daubechies (1993). Nonseparable bidimensional wavelet bases. Rev. Mat. Iberoamericana. 9 (1), 51-137 C. W. Curtis and I. Reiner (1988). Representation theory of finite groups and associative Algebras. Reprint of the 1962 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York. I. Daubechies (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.. 41, 909-996 F. Delgosa and F. Fekri (2004). Results on the factorization of multidimensional matrices for paraunitary filterbanks over the complex field. IEEE Trans. Image Process.. 52 (5), 1289-1303 M. N. Do and Y. M. Lu (2011). Multidimensional Filter Banks and Multiscale Geometric Representations. Foundation and Trends in Signal Processing. 5 (3), 157-264 M. N. Do and M. Vetterli (2005). The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process.. 14 (12), 2091-2106 F. Fekri, R. M. Mersereau and R. W. Schafer (2002). Theory of Paraunitary Filter Banks over fields of characteristic 2. IEEE Trans. Inform. Theory. 48 (11), 2964-2979 X. Gao, T. Nguyen and G. Strang (2001). On Factorization of $M$-Channel Paraunitary Filterbanks. IEEE Trans. Signal process.. 49 (7), 1433-1446 P. Hurley and T. Hurley (2009). Codes from zero-divisors and units in group rings. Int. J. Inf. Coding Theory. 1, 57-87 P. Hurley and T. Hurley (2010). Block codes from matrix and group rings. in Selected Topics in Information and Coding Theory, eds, I. Woungang, S. Misra and S. C. Misma, World Scientific, Chapter 5. , 159-194 T. Hurley (2006). Group rings and rings of matrices. Int. J. Pure Appl. Math.. 31 (3), 319-335 A. Klappenecker (2000). On Multirate Filter Bank Structures. n Transforms and Filter Banks, Proc. of Second International Workshop on Transforms and Filter Banks, R. Creutzburg, J. Astola (Eds.), TICSP 4. , 175-188 J. Kovacevic and M. Vetterli (1992). Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R_n. IEEE Trans. Inform. Theory, Special Issue on Wavelet Transforms and Multiresolution Signal Analysis. 38 (2 part 2), 533-555 C. Milies and S. Sehgal (2002). An introduction to Group Rings. Algebras and Applications, 1. Kluwer Academic Publishers, Dordrecht. R. Sharma and P. Yadav (2013). Unit group of algebra of circulant matrices. Int. J. Group Theory. 2 (4), 1-6 G. Strang and T. Nguyen (1996). Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, MA. P. P. Vaidyanathan (1993). Multirate Systems and Filterbanks. Prentice-Hall. J. Zhou, M. N. Do and J. Kovacevic (2006). Special Paraunitary Matrices, Cayley Transform and Multidimensional Orthogonal Filter Banks. IIEEE Trans. Image Process.. 15 (2), 511-519