Maximal subsets of pairwise non-commuting elements of p-groups of order less than p6

Document Type : Research Paper

Author

University of Arak

Abstract

Let $G$ be a non-abelian group of order $p^n$‎, ‎where $n\leq 5$ in which $G$ is not extra special of order $p^5$‎. ‎In this paper we determine the maximal size of subsets $X$ of $G$‎ ‎with the property that $xy\neq yx$ for any $x,y$ in $X$ with‎ ‎$x\neq y$‎.

Keywords

Main Subjects


A. Abdollahi, S. Akbari and H. R. Maimani (2006). Non-commuting graph of a group. J. Algbera. 298 (2), 468-492 A. Azad and Cheryl E. Praeger (2009). Maximal subsets of pairwise non-commuting elements of three-dimensional general linear groups. Bull. Aus. Math. Soc.. 80 (1), 91-104 A. Azad, S. Fouladi and R. Orfi (2013). Maximal subsets of pairwise non-commuting elements of some finite $p$-groups. Bull. Iranian Math. Soc.. 39 (1), 187-192 Y. Berkovich (2008). Groups of prime power order. Walter de Gruyter, Berlin. 1 A. Y. M. Chin (2005). On non-commuting sets in an extraspecial $p$-group. J. Group Theory. 8 (2), 189-194 S. Fouladi and R. Orfi (2011). Maximal subsets of pairwise non-commuting elements of some $p$-groups of maximal class. Bull. Aust. Math. Soc.. 84 (3), 447-451 S. Fouladi and R. Orfi (2013). Maximum size of subsets of pairwise non-commuting elements in finite metacyclic $p$-groups. Bull. Aust. Math. Soc.. 87 (1), 18-23 The GAP Group (2008). GAP - - Groups, Algorithms, and Programming. Version 4.4.12, http://www.gap-system.org. C. R. Leedham-Green and S. McKay (2002). The Structure of Groups of Prime Power Order. of London Mathematical Society Monographs, Oxford University Press, Oxford. 27 R. James (1980). The Groups of Order p^6 p an odd prime. Math. Comp.. 34 (150), 613-637 B. H. Neumann (1976). A problem of Paul Erd$\ddot o$s on groups. J. Austral. Math. Soc. Ser. A. 21 (4), 467-472 L. Pyber (1987). The number of pairwise non-commuting elements and the index of the centre in a finite group. J. London Math. Soc. (2). 35, 287-295 D. M. Rocke (1975). p-groups with abelian centralizers. Proc. London Math. Soc. (3). 30, 55-75