Second cohomology of Lie rings and the Schur multiplier

Document Type : Research Paper


1 AG Algebra, Mathematisches Institut, Justus-Liebig-Universität Gießen, Arndtstrasse 2 35392, Giessen, Germany

2 Department of Mathematics, University of Kharazmi, P.O.Box 15614, Tehran, Iran


We exhibit an explicit construction for the second cohomology group $H^2(L, A)$ for a Lie ring $L$ and a trivial $L$-module $A$. We show how the elements of $H^2(L, A)$ correspond one-to-one to the equivalence classes of central extensions of $L$ by $A$, where $A$ now is considered as an abelian Lie ring. For a finite Lie ring $L$ we also show that $H^2(L, C^*) \cong M(L)$, where $M(L)$ denotes the Schur multiplier of $L$. These results match precisely the analogue situation in group theory.


Main Subjects

A. Bak, G. Donadze, N. Inassaridze and M. Ladra (2007). Homology of multiplicative Lie rings. J. Pure Appl. Algebra. 208, 761-777 P. Batten and E. Stitzinger (1996). On covers of Lie algebras. Comm. Algebra. 24, 4301-4317 B. Eick, M. Horn and S. Zandi (2012). Schur multipliers and the Lazard correspondence. Archiv der Mathematik. 99, 217-226 H. Hopf (1942). Fundamentalgruppe und zweite Bettische Gruppe. Comment. Math. Helv.. 14, 257-309 G. Karpilovsky (1987). The Schur multiplier. The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, New York. 2 E. I. Khukhro (1998). p-automorphisms of finite p-groups. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge. 246 J. Schur (1904). Uber die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. J. Reine Angew. Math.. 127, 20-50 J. Schur (1907). Untersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. Reine Angew. Math.. 132, 85-137 C. A. Weibel (1994). Homological Algebra. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge. 38