Let $G$ be a finite group. A subgroup $H$ of $G$ is called an $\mathcal{H}$-subgroup in $G$ if $N_G(H)\cap H^{g}\leq H$ for all $g\in G$. A subgroup $H$ of $G$ is called a weakly $\mathcal{H}^{\ast}$-subgroup in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is an $\mathcal{H}$-subgroup in $G$. We investigate the structure of the finite group $G$ under the assumption that every cyclic subgroup of $G$ of prime order $p$ or of order $4$ (if $p=2$) is a weakly $\mathcal{H}^{\ast}$-subgroup in $G$. Our results improve and extend a series of recent results in the literature.
M. M. Al-Shomrani, M. Ramadan and A. A. Heliel (2012). Finite groups whose minimal subgroups are weakly $\mathcal{H}$-subgroups. Acta Math. Sci. Ser. B Engl. Ed.. 32 (6), 2295-2301 M. Asaad, A. A. Heliel and M. M. Al-Shomrani (2012). On weakly
mathcalH-subgroups of finite groups. Comm.
Algebra. 40 (9), 3540-3550 A. Ballester-Bolinches, Y. Wang and X. Guo (2000). C -Supplemented subgroups of finite groups. Glasg. Math. J.. 42 (3), 383-389 M. Bianchi, A. Gillio Berta Mauri, M. Herzog and L.
Verardi (2000). On finite solvable groups in which normality is a transitive
relation. J. Group Theory. 3, 147-156 J. Buckley (1970). Finite groups whose minimal subgroups are
normal. Math. Z.. 116, 15-17 P. Csorgo and M. Herzog (2004). On supersolvable groups
and the nilpotator. Comm. Algebra. 32 (2), 609-620 K. Doerk and T. Hawkes (1992). Finite Soluble Groups. Walter de Gruyter, Berlin-New York. B. Huppert (1979). Endliche Gruppen I. Springer,
Berlin-New York. B. Huppert and N. Blackburn (1982). Finite Groups III. Springer, Berlin-New York. Y. Li (2002). Some notes on the minimal subgroups of Fitting
subgroups of finite groups. J. Pure Appl. Algebra. 171, 289-294 M. Ramadan, M. Ezzat Mohamed and A. A. Heliel (2005). On
c-normality of certain subgroups of prime power order of finite groups. Arch. Math. (Basel). 85, 203-210 Y. Wang (1996). C-Normality of groups and its
properties. J. Algebra. 180, 954-965 Y. Wang, Y. Li and J. Wang (2003). Finite groups with
c-supplemented minimal subgroups. Algebra Colloq.. 10 (3), 413-425 H. Wei (2001). On c-normal maximal and minimal subgroups of Sylow
subgroups of finite groups. Comm. Algebra. 29 (5), 2193-2200 H. Wei, Y. Wang and Y. Li (2003). On c-normal maximal and minimal
subgroups of Sylow subgroups of finite groups II. Comm. Algebra. 31 (10), 4807-4816 H. Wei, Y. Wang and Y. Li (2004). On c-supplemented maximal and
minimal subgroups of Sylow subgroups of finite groups. Proc. Amer. Math. Soc.. 132 (8), 2197-2204
Heliel, A., Hijazi, R., & Al-Obidy, R. (2014). Finite groups whose minimal subgroups are weakly H*-subgroups. International Journal of Group Theory, 3(3), 1-11. doi: 10.22108/ijgt.2014.3837
MLA
Abdelrahman Abdelhamid Heliel; Rola Asaad Hijazi; Reem Abdulaziz Al-Obidy. "Finite groups whose minimal subgroups are weakly H*-subgroups". International Journal of Group Theory, 3, 3, 2014, 1-11. doi: 10.22108/ijgt.2014.3837
HARVARD
Heliel, A., Hijazi, R., Al-Obidy, R. (2014). 'Finite groups whose minimal subgroups are weakly H*-subgroups', International Journal of Group Theory, 3(3), pp. 1-11. doi: 10.22108/ijgt.2014.3837
VANCOUVER
Heliel, A., Hijazi, R., Al-Obidy, R. Finite groups whose minimal subgroups are weakly H*-subgroups. International Journal of Group Theory, 2014; 3(3): 1-11. doi: 10.22108/ijgt.2014.3837