The coprime graph $\gg$ with a finite group $G$ as follows: Take $G$ as the vertex set of $\gg$ and join two distinct vertices $u$ and $v$ if $(|u|,|v|)=1$. In the paper, we explore how the graph theoretical properties of $\gg$ can effect on the group theoretical properties of $G$.
A. Abdollahi, S. Akbari and H. R. Maimani (2006). Non-commuting graph of a group. J. Algebra. 298, 468-492 A. Abdollahi and A. M. Hassanabadi (2007). Non-cyclic graph of a group. Comm. Algebra. 35, 2057-2081 P. Balakrishnan, M. Sattanathan and R. Kala (2011). The center graph of a group. South Asian J. Math.. 1, 21-28 I. Chakrabarty, S. Ghosh and M. Sen (2009). Undirected power graphs of semigroups. Semigroup Forum. 78, 410-426 C. Gary and P. Zhang (2006). Introduction to Graph Theory. Posts and Telecom Press, Beijing. M. S. Lucido (1999). Prime graph components of finite almost simple groups. Rend. Sem. Mat. Univ. Padova. 102, 1-22 X. L. Ma, H. Q. Wei and G. Zhong (2013). The cyclic graph of a finite group. Algebra, Article ID 107265, {http://dx.doi.org/10.1155/2013/107265}. 2013 H. Kurzweil and B. Stellmacher (2004). The Theory of Finite Groups An Introduction. Springer-Verlag, New York.
Ma, X. L., Wei, H. Q., & Yang, L. Y. (2014). The coprime graph of a group. International Journal of Group Theory, 3(3), 13-23. doi: 10.22108/ijgt.2014.4363
MLA
Xuan Long Ma; Hua Quan Wei; Li Ying Yang. "The coprime graph of a group". International Journal of Group Theory, 3, 3, 2014, 13-23. doi: 10.22108/ijgt.2014.4363
HARVARD
Ma, X. L., Wei, H. Q., Yang, L. Y. (2014). 'The coprime graph of a group', International Journal of Group Theory, 3(3), pp. 13-23. doi: 10.22108/ijgt.2014.4363
VANCOUVER
Ma, X. L., Wei, H. Q., Yang, L. Y. The coprime graph of a group. International Journal of Group Theory, 2014; 3(3): 13-23. doi: 10.22108/ijgt.2014.4363