B. Assmann and S. Linton (2007). Using the Mal'cev correspondence for collection in polycyclic groups. J. Algebra. 316 (2), 828-848 G. Baumslag and D. Solitar (1962). Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc.. 68, 199-201 L. Bartholdi (2003). Endomorphic presentations of branch groups. J. Algebra. 268 (2), 419-443 L. Bartholdi, B. Eick and R. Hartung (2008). A nilpotent quotient algorithm for certain infinitely presented groups and its applications. Internat. J. Algebra Comput.. 18 (8), 1321-1344 A. M. Brunner, S. Sidki and A. C. Vieira (1999). A just nonsolvable torsion-free group defined on the binary tree. J. Algebra. 211 (1), 99-114 R. I. Grigorchuk and A. Zuk (2002). On a torsion-free weakly branch group defined
by a three state automaton. Internat. J. Algebra Comput.. 12 (1-2), 223-246 G. Endimioni and G. Traustason (2008). Groups that are pairwise nilpotent. Comm. Algebra. 36 (12), 4413-4435 The GAP Group. (2008). GAP-- Groups, Algorithms, and Programming. 4.4.12 V. Gebhardt (2002). Efficient collection in infinite polycyclic groups. J. Symbolic Comput.. 34 (3), 213-228 R. Hartung (2009). NQL- Nilpotent quotients of L-presented groups. An accepted Gap 4 package,. R. Hartung (2010). Approximating the Schur multiplier of certain infinitely presented groups via nilpotent quotients. LMS J. Comput. Math.. 13, 260-271 C. R. Leedham-Green and L. H. Soicher (1990). Collection from the left and other strategies. J. Symbolic Comput.. 9 (5-6), 665-675 E. H. Lo (1997). A polycyclic quotient algorithm. In Groups and computation, II (New Brunswick, NJ, 1995) volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 159--167. Amer. Math. Soc.,
Providence, RI, 1997.. 28, 159-167 E. H. Lo (1998). A polycyclic quotient algorithm. J. Symbolic Comput.. 25 (1), 61-97 W. Nickel (1996). Computing nilpotent quotients of finitely
presented groups. In Geometric and computational perspectives on
infinite groups (Minneapolis, NN and New Brunswick, NJ, 1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 175--191. Amer. Math. Soc., Providence, RI, 1996.. 25, 175-191 C. C. Sims (1994). Computation with finitely presented groups. Cambridge University Press, New York. M. R. Vaughan-Lee (1984). An aspect of the nilpotent quotient algorithm. Computational Group Theory (Durham 1982);
Academic Press, London. , 75-83 M. R. Vaughan-Lee (1990). Collection from the left. J. Symbolic Comput.. 9 (5-6), 725-733