Restrictions on commutativity ratios in finite groups

Document Type : Research Paper

Authors

1 University of Connecticut

2 University College Cork

3 Cork Institute of Technology

Abstract

 ‎We consider two commutativity ratios $\Pr(G)$ and $f(G)$ in a finite group $G$‎ ‎and examine the properties of $G$ when these ratios are `large'‎. ‎We show that‎ ‎if $\Pr(G) > \frac{7}{24}$‎, ‎then $G$ is metabelian and we give threshold‎ ‎results in the cases where $G$ is insoluble and $G'$ is nilpotent‎. ‎We also‎ ‎show that if $f(G) > \frac{1}{2}$‎, ‎then $f(G) = \frac{n+1}{2n}$‎, ‎for some‎ ‎natural number $n$‎.

Keywords

Main Subjects


F. Barry (2004). The commutator subgroup and CLT (NCLT) groups. Math. Proc. R. Ir. Acad.. 104A (1), 119-126 Y. Berkovich (1994). On induced characters. Proc. Amer. Math. Soc.. 121, 679-685 Y. Berkovich and K. R. Nekrasov (1986). Finite groups with large sums of degrees of irreducible characters. (Russian). Publ. Math. Debrecan. 33 (3-4), 333-354 Ya. G. Berkovich and E. M. Zhmud (1999). Characters of finite groups. Part 2. Translated from the Russian manuscript by P. Shumyatsky [P. V. Shumyatski{\u\i}], V. Zobina and Berkovich. Translations of Mathematical Monographs, American Mathematical Society, Providence, RI. 181 H. F. Blichfeldt (1917). Finite collineation groups. The University of Chicago Press. J. Burns, G. Ellis, D. MacHale, P. OMurchu, R. Sheehy, and J. Wiegold (1997). Lower central series of groups with small upper central factors. Proc. Roy. Irish Acad. Sect. A. 97 (2), 113-122 W. Burnside (1955). Theory of groups of finite order. 2d ed. Dover Publications, Inc., New York. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson (1985). Atlas of finite groups. Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham. J. D. Dixon (2002). Probabilistic group theory. C. R. Math. Acad. Sci. Soc. R. Can.. 24, 1-15 B. Eick, H. U. Besche and E. OBrien The small groups library. http://www.icm.tu-bs.de/ag_algebra/software/small/small.html. W. H. Gustafson (1973). What is the probability that two group elements commute?. Amer. Math. Monthly. 80, 1031-1034 P. Hall (1940). The classification of prime-power groups. J. Reine Angew. Math.. 182, 130-141 K. S. Joseph (1969). Commutativity in non-abelian groups. Ph.D. thesis, University of California, Los Angeles. P. Lescot (1995). Isoclinism classes and commutativity degrees of finite groups. J. Algebra. 177 (3), 847-869 D. MacHale and P. OMurchu (1993). Commutator subgroups of groups with small central factor groups. Proc. Roy. Irish Acad. Sect. A. 93 (1), 123-129 P. OMurchu (1990). Central factor groups and commutator subgroups. Master's thesis, National University of Ireland, Cork. D. S. Passman (1966). Groups whose irreducible representations have degrees dividing p^2. Pacific J. Math.. 17, 475-496 A. NiShe (2000). Commutativity and generalisations in finite groups. Ph. D. thesis, National University of Ireland, Cork. T. A. Springer (1977). Invariant theory.. Springer-Verlag. S. S.-T. Yau and Y. Yu (1993). Gorenstein quotient singularities in dimension three. Mem. Amer. Math. Soc.. 505
Volume 3, Issue 4 - Serial Number 4
December 2014
Pages 1-12
  • Receive Date: 05 September 2013
  • Revise Date: 08 February 2014
  • Accept Date: 09 February 2014
  • Published Online: 01 December 2014