Groups of order 2048 with three generators and three relations

Document Type : Research Paper



 It is shown that there are exactly seventy-eight 3-generator‎ ‎2-groups of order $2^{11}$ with trivial Schur multiplier‎. ‎We then‎ ‎give 3-generator‎, ‎3-relation presentations for forty-eight of them‎ ‎proving that these groups have deficiency zero‎.


Main Subjects

H. U. Besche, B. Eick and E. A. O'Brien (2002). A millennium project: constructing small groups. Internat. J. Algebra Comput.. 12 (5), 623-644 W. Bosma, J. Cannon and C. Playoust (1997). The Magma algebra system. I. The user language. J. Symbolic Comput.. 24 (3-4), 235-265 J. J. Cannon (1973). Construction of defining relators for finite groups. Discrete Math.. 5, 104-129 S. Fouladi, A. R. Jamali and R. Orfi (2009). Some 3-generator, 3-relation finite 2-groups. Comm. Algebra. 37 (1), 40-46 G. Havas and M. F. Newman (1983). Minimal presentations for finite groups of prime-power order. Comm. Algebra. 11 (20), 2267-2275 G. Havas, M. F. Newman and E. A. O'Brien (1994). Groups of deficiency zero. In {it Geometric and Computational Prespectives on Infinite Groups,} Minneapolis, MN and New Brunswick, NJ, 1994; Dimacs Ser. Discrete Math. Theoret. Comput. Sci. 25 AMS: Providence, RI,. 25, 53-67 G. Havas, M. F. Newman and E. A. O'Brien (2004). On the efficiency of some finite groups. Comm. Algebra. 32 (4), 649-656 A. Jamali (2001). A further class of 3-generator, 3-relation finite groups. Comm. Algebra. 29 (2), 879-887 D. L. Johnson (1990). Presentations of Groups. London Math. Soc. Stud. Texts, Cambridge Univ. Press, Cambridge. 15 G. Karpilovsky (1987). The Schur Multiplier. Oxford Univ. Press, New York. M. F. Newman and E. A. O'Brien (1996). Application of computers to questions like those of Burnside II. Internat. J. Algebra Comput.. 6 (5), 593-605 E. A. O'Brien (1990). The p-group generation algorithm. J. Symbolic Comput.. 9 (5-6), 677-698 The GAP Group GAP - Groups, Algorithms, and Programming,. ( Version 4.4.12 J. W. Wamsley (1973). Minimal presentations for finite groups. Bull. London Math. Soc.. 5, 129-144