In this paper we study right $n$-Engel group elements. By modifying a group constructed by Newman and Nickel, we construct, for each integer $n\geq 5$, a 2-generator group $G =\langle a, b\rangle$ with the property that $b$ is a right $n$-Engel element but where $[b^k,_n a]$ is of infinite order when $k\notin \{0, 1\}$.
A. Abdollahi and H. Khosravi (2010). On the right and left 4-Engel elements. Communications in Algebra. 38, 1-11 A. Abdollahi and H. Khosravi (2010). Right 4-Engel elements in a group. Journal of Algebra and Its Applications. 9, 763-769 H. Heineken (1961). Engelsche Elemente der Lange drei. Illinois J. Math.. 5, 681-707 L.-C. Kappe (1981). Right and left Engel elements in metabelian
groups. Comm. Algebra. 9, 1295-1306 W. Kappe (1961). Die A-Norm einer Gruppe (German). Illinois J. Math.. 5, 187-197 L.-C. Kappe and P. M. Ratchford (1999). On centralizer-like subgroups associated with the n-Engel word. Algebra Colloquium. 6, 1-8 I. D. Macdonald (1970). Some examples in the theory of groups. in: H. Shanker (Ed.), Mathematical Essays dedicated to A.
J. Macintyre, Ohio University Press. , 263-269 M. F. Newman and W. Nickel (1994). Engel elements in groups. J. Pure Appl. Algebra. 96, 39-45 W. Nickel (1998). NQ, 1998, A refereed GAP 4 package. GAP-Groups, Algoritms, and
Programing. W. Nickel (1999). Some groups with right Engel elements. Groups St. Andrews 1997 in Bath, II, London
Math. Soc. Lecture Note Ser.. 261, 571-578 The GAP Group (2004). GAP-Groups, Algoritms, and Programing. http://www.gap-system.org. Version 4.4.4