Some special classes of n-Aabelian groups

Document Type : Research Paper


1 Dipartimento di Matematica Università di Salerno - Italy

2 Dipartimento di Matematica, Università di Salerno - Italy


‎‎Given an integer $n$‎, ‎we denote by $\mathfrak B_n$ and $\mathfrak C_n$ the classes of all groups $G$ for which the map $\phi_{n}:g\mapsto g^n$ is a monomorphism and an epimorphism of $G$‎, ‎respectively‎. ‎In this paper we give a characterization for groups in $\mathfrak B_n$ and for groups in $\mathfrak C_n$‎. ‎We also obtain an arithmetic description of the set of all integers $n$ such that a group $G$ is in $\mathfrak B_n\cap\mathfrak C_n$‎.


Main Subjects

J. L. Alperin (1969). A classification of n-abelian groups. Canad. J. Math.. 21, 1238-1244 R. Baer (1953). Factorization of n-soluble and n-nilpotent groups. Proc. Amer. Math. Soc.. 4, 15-26 L.-C. Kappe (1986). On n-Levi groups. Arch. Math.. 47, 198-210 F. W. Levi (1945). Notes on group theory VII. J. Indian Math. Soc.. 9, 37-42 D. MacHale (1974). Power mappings and group morphisms. Proc. Roy. Irish. Acad. Sect. A. 74, 91-93 E. Schenkman and L. I. Wade (1958). The mapping which takes each element of a group onto its nth power. Amer. Math. Monthly. 65, 33-34 H. F. Trotter (1965). Groups in which raising to a power is an automorphism. Canad. Math. Bull.. 8, 825-827