Let $G$ be a finite group. In [Ghasemabadi et al., characterizations of the simple group ${}^2D_n(3)$ by prime graph and spectrum, Monatsh Math., 2011] it is proved that if $n$ is odd, then ${}^2D _n(3)$ is recognizable by prime graph and also by element orders. In this paper we prove that if $n$ is even, then $D={}^2D_{n}(3)$ is quasirecognizable by prime graph, i.e. every finite group $G$ with $\Gamma(G)=\Gamma(D)$ has a unique nonabelian composition factor and this factor is isomorphic to $D$.
A. Babai and B. Khosravi (2011). Recognition by prime graph of $^2D_{2^m+1}(3)$. Sib. Math. J.. 52 (5), 788-795 A. Babai, B. Khosravi and N. Hasani (2009). Quasirecognition by prime graph of $^2D_p(3)$ where $p=2^n+1\geq 5$
is a prime. Bull. Malays. Math. Sci. Soc. (2). 32 (3), 343-350 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson (1985). Atlas of finite groups. Oxford University Press,
Oxford. M. F. Ghasemabadi, A. Iranmanesh and N. Ahanjideh (2012). Characterizations of the simple group ${}^2D_n(3)$ by prime graph and spectrum. Monatsh Math.. 168 (3-4), 347-361 B. Khosravi, Z. Akhlaghi and M. Khatami (2011). Quasirecognition by prime graph of simple group $D_n(3)$. Publ. Math. Debrecen. 78 (2), 469-484 B. Khosravi and H. Moradi (2011). Quasirecognition by prime graph of finite simple groups $L_n(2)$ and $U_n(2)$. Acta Math. Hungar.. 132 (1-2), 140-153 B. Khosravi and H. Moradi (2012). Quasirecognition by prime graph of some orthogonal groups over the binary field. J. Algebra Appl.. 11 (3), 15-0 Z. Momen and B. Khosravi (2012). On $r$-recognition by prime graph of
$B_p(3)$ where $p$ is an odd prime. Monatsh Math.. 166 (2), 239-253 A. V. Vasilev (2005). On connection between the structure of
a finite group and the properties of its prime graph. Sib.
Math. J.. 46 (3), 396-404 A. V. Vasil'ev and I. B. Gorshkov (2009). On recognition of
finite groups with connected prime graph. Sib. Math. J.. 50 (2), 233-238 A. V. Vasil'ev and E. P. Vdovin (2005). An adjacency
criterion for the prime graph of a finite simple group. Algebra
Logic. 44 (6), 381-406 A. V. Vasil'ev and E. P. Vdovin (2011). Cocliques of maximal size in the prime graph of a finite simple group. Algebra Logic, Arxiv: 0905.1164v1. 50 (4), 291-322 K. Zsigmondy (1892). Zur theorie der potenzreste. Monatsh. Math. Phys.. 3, 265-284
Khosravi, B., & Moradi, H. (2014). Quasirecognition by prime graph of finite simple Groups 2Dn(3). International Journal of Group Theory, 3(4), 47-56. doi: 10.22108/ijgt.2014.5254
MLA
Behrooz Khosravi; Hossein Moradi. "Quasirecognition by prime graph of finite simple Groups 2Dn(3)", International Journal of Group Theory, 3, 4, 2014, 47-56. doi: 10.22108/ijgt.2014.5254
HARVARD
Khosravi, B., Moradi, H. (2014). 'Quasirecognition by prime graph of finite simple Groups 2Dn(3)', International Journal of Group Theory, 3(4), pp. 47-56. doi: 10.22108/ijgt.2014.5254
VANCOUVER
Khosravi, B., Moradi, H. Quasirecognition by prime graph of finite simple Groups 2Dn(3). International Journal of Group Theory, 2014; 3(4): 47-56. doi: 10.22108/ijgt.2014.5254