Let $\pi_e(G)$ be the set of element orders of a finite group $G$. Let $nse(G)=\{m_n\mid n\in\pi_e(G)\}$, where $m_n$ be the number of elements of order $n$ in $G$. In this paper, we prove that if $nse(G)=nse(L_2(81))$, then $G\cong L_2(81)$.
Mousavi, L., & Taeri, B. (2016). A characterization of L2(81) by nse. International Journal of Group Theory, 5(1), 29-35. doi: 10.22108/ijgt.2016.5843
MLA
Leila Mousavi; Bijan Taeri. "A characterization of L2(81) by nse". International Journal of Group Theory, 5, 1, 2016, 29-35. doi: 10.22108/ijgt.2016.5843
HARVARD
Mousavi, L., Taeri, B. (2016). 'A characterization of L2(81) by nse', International Journal of Group Theory, 5(1), pp. 29-35. doi: 10.22108/ijgt.2016.5843
VANCOUVER
Mousavi, L., Taeri, B. A characterization of L2(81) by nse. International Journal of Group Theory, 2016; 5(1): 29-35. doi: 10.22108/ijgt.2016.5843