We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let $\kappa$ be an infinite cardinal. If $G=\underset{i=1}{\stackrel{\infty}\bigcup} G_i$, where $G_i\cong FSym(\kappa n_i)$, ($H=\underset{i=1}{\stackrel{\infty}\bigcup}H_i$, where $H_i\cong Alt(\kappa n_i)$), is a group of strictly diagonal type and $\xi=(p_1, p_2, \ldots )$ is an infinite sequence of primes, then $G$ is isomorphic to the homogenous finitary symmetric group $FSym(\kappa)(\xi)$ ($H$ is isomorphic to the homogenous alternating group $Alt(\kappa)(\xi))$, where $n_0=1$, $n_i=p_1p_2\cdots p_i$.
Kegel, O. &., & Kuzucuoğlu, M. (2015). Homogenous finitary symmetric groups. International Journal of Group Theory, 4(1), 7-12. doi: 10.22108/ijgt.2015.7277
MLA
Otto. H. Kegel; Mahmut Kuzucuoğlu. "Homogenous finitary symmetric groups". International Journal of Group Theory, 4, 1, 2015, 7-12. doi: 10.22108/ijgt.2015.7277
HARVARD
Kegel, O. &., Kuzucuoğlu, M. (2015). 'Homogenous finitary symmetric groups', International Journal of Group Theory, 4(1), pp. 7-12. doi: 10.22108/ijgt.2015.7277
VANCOUVER
Kegel, O. &., Kuzucuoğlu, M. Homogenous finitary symmetric groups. International Journal of Group Theory, 2015; 4(1): 7-12. doi: 10.22108/ijgt.2015.7277