The theorems of Schur and Baer: a survey

Document Type : Ischia Group Theory 2014


1 University of Alabama

2 Department of Algebra, Facultet of mathematic and mechanik\ National University of Dnepropetrovsk\ Gagarin prospect 72\ Dnepropetrovsk 10, 49010, Ukraine.


This paper gives a short survey of some of the known results generalizing the theorem‎, ‎credited to I‎. ‎Schur‎, ‎that if the central factor group is finite then the derived subgroup is also finite‎.


Main Subjects

[1] S. I. Adian, Certain torsion-free groups, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971) 459–468.
[2] R. Baer, Representations of groups as quotient groups. II. minimal central chains of a group, Trans. Amer. Math. Soc., 58 (1945) 348–389.
[3] R. Baer, Endlichkeitskriterien für Kommutatorgruppen, Math. Ann., 124 (1952) 161–177.
[4] A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko and J. Otal, Extension of a Schur theorem to groups with a central factor with a bounded section rank, J. Algebra, 393 (2013) 1–15.
[5] J. Burns and G. Ellis, Inequalities for Baer invariants of finite groups, Canad. Math. Bull., 41 no. 4 (1998) 385–391.
[6] M. R. Dixon, L. A. Kurdachenko and J. Otal, On groups whose factor groups modulo the hypercentre have finite section p-rank, preprint.
[7] M. R. Dixon, L. A. Kurdachenko and J. Otal, Linear analogues of theorems of Schur, Baer and Hall, Int. J. Group Theory, 2 no. 1 (2013) 79–89.
[8] M. R. Dixon, L. A. Kurdachenko and N. V. Polyakov, Locally generalized radical groups satisfying certain rank conditions, Ricerche di Matematica, 56 (2007) 43–59.
[9] M. R. Dixon, L. A. Kurdachenko and A. A. Pypka, On some variants of theorems of Schur and Baer, Milan. J. Math., 82 (2014) 233–241.
[10] G. Ellis, On groups with a finite nilpotent upper central quotient, Arch. Math. (Basel), 70 no. 2 (1998) 89–96.
[11] M. De Falco, F. de Giovanni, C. Musella and Y. P. Sysak, On the upper central series of infinite groups, Proc. Amer. Math. Soc., 139 no. 2 (2011) 385–389.
[12] S. Franciosi, F. De Giovanni and L. A. Kurdachenko, On groups with many almost normal subgroups, Ann. Mat. Pura Appl. (4), 169 (1995) 35–65.
[13] S. Franciosi, F. De Giovanni and L. A. Kurdachenko, The Schur property and groups with uniform conjugacy classes, J. Algebra, 174 (1995) 823–847.
[14] P. Hall, The classification of prime-power groups, J. Reine Angew. Math., 182 (1940) 130–141.
[15] P. Hall, The Edmonton Notes on Nilpotent Groups, Queen Mary College Mathematics Notes, London, 1969.
[16] P. Hegarty, The absolute centre of a group, J. Algebra, 169 no. 3 (1994) 929–935.
[17] N. S. Hekster, On the structure of n-isoclinism classes of groups, J. Pure Appl. Algebra, 40 no. 1 (1986) 63–85.
[18] I. Kaplansky, An Introduction to Differential Algebra, Actualités Sci. Ind., Publ. Inst. Math. Univ. Nancago, no. 5, Hermann, Paris, 1957.
[19] L. A. Kurdachenko, On some classes of periodic FC-groups, Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989) (Providence, RI), Contemp. Math., Amer. Math. Soc., 131 1992 499–509.
[20] L. A. Kurdachenko and J. Otal, The rank of the factor-group modulo the hypercenter and the rank of the somehypocenter of a group, Cent. Eur. J. Math., 11 no. 10 (2013) 1732–1741.
[21] L. A. Kurdachenko, J. Otal and A. A. Pypka, Relationships between the factors of the upper and lower central series of a group, preprint.
[22] L. A. Kurdachenko, J. Otal and I. Ya. Subbotin, On a generalization of Baer Theorem, Proc. Amer. Math. Soc., 141 no. 8 (2013) 2597–2602.
[23] L. A. Kurdachenko and P. Shumyatsky, The ranks of central factor and commutator groups, Math. Proc. Cambridge Philos. Soc., 154 no. 1 (2013) 63–69.
[24] L. A. Kurdachenko and I. Ya. Subbotin, On some properties of the upper and lower central series, Southeast Asian Bull. Math., 37 no. 4 (2013) 547–554.
[25] A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra, 105 no. 2 (1987) 484–505.
[26] A. Lubotzky and A. Mann, Residually finite groups of finite rank, Math. Proc. Camb. Phil. Soc., 106 (1989) 385–388.
[27] A. Mann, The exponents of central factor and commutator groups, J. Group Theory, 10 no. 4 (2007) 435–436.
[28] B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3), 1 (1951) 178–187.
[29] A. Yu Ol’shanskii, Geometry of Defining Relations in Groups, Mathematics and its Applications, 70, Kluwer Aca-demic Publishers, Dordrecht, 1991.
[30] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, 1 and 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, Heidelberg, New York, 1972, Band 62 and 63.
[31] M. Rosenlicht, On a result of Baer, Proc. Amer. Math. Soc., 13 (1962) 99–101.
[32] A. Schlette, Artinian, almost abelian groups and their groups of automorphisms, Pacific J. Math., 29 (1969) 403–425.
[33] I. Schur,Über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math., 127 (1904) 20–50.
[34] J. Wiegold, Multiplicators and groups with finite central factor-groups, Math. Z., 89 (1965) 345–347.