Let $G$ be a finite group and $\pi_{e}(G)$ be the set of element orders of $G$. Let $k \in \pi_{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set nse($G$):=$\{ m_{k} | k \in \pi_{e}(G)\}$. In this paper, we prove that if $G$ is a group such that nse($G$)=nse($PSL(2, 25)$), then $G \cong PSL(2, 25) $.
J. H. Conway, R. T. Curtis, S. P. Norton, et al (1985). Atlas of finite groups. Clarendon, Oxford. C. G. Shao, W. Shi, Q. Jiang (2008). Characterization of simple $%
K_{4}- $groups. Front Math. China. 3, 355-370 R. Shen, C. G. Shao, Q. Jiang, W. Shi, V. Mazurov (2010). A New
Characterization of $A_{5}$. Monatsh Math.. , 337-341 M. Khatami, B. Khosravi, Z. Akhlaghi (2009). A new characterization
for some linear groups. Monatsh Math.. G. Frobenius (1895). Verallgemeinerung des sylowschen satze. Berliner
sitz. , 981-993 M. Hall (1959). The Theory of Groups. Macmillan, New York. M. Herzog (1968). On finite simple groups of order divisible by
three primes only. J. Algebra (10). 120, 383-388 W. Shi (1991). On simple $K_{4}$-groups. Chinese Science Bull. (17) (in Chinese).. 36, 1281-1283
Khalili Asboei, A., & Salehi Amiri, S. S. (2012). A new characterization of PSL(2, 25). International Journal of Group Theory, 1(3), 15-19. doi: 10.22108/ijgt.2012.765
MLA
Alireza Khalili Asboei; Syyed Sadegh Salehi Amiri. "A new characterization of PSL(2, 25)". International Journal of Group Theory, 1, 3, 2012, 15-19. doi: 10.22108/ijgt.2012.765
HARVARD
Khalili Asboei, A., Salehi Amiri, S. S. (2012). 'A new characterization of PSL(2, 25)', International Journal of Group Theory, 1(3), pp. 15-19. doi: 10.22108/ijgt.2012.765
VANCOUVER
Khalili Asboei, A., Salehi Amiri, S. S. A new characterization of PSL(2, 25). International Journal of Group Theory, 2012; 1(3): 15-19. doi: 10.22108/ijgt.2012.765