On residually finite semigroups of cellullar automata

Document Type : Ischia Group Theory 2014


1 Dipartimento di Ingegneria, Università del Sannio



We prove that if $M$ is a monoid and $A$ a finite set with more than one element‎, ‎then the residual finiteness of $M$ is equivalent to that of the monoid consisting of all cellular automata over $M$ with alphabet $A$‎.


Main Subjects

M. Boyle, D. Lind and D. Rudolph (1988). The automorphism group of a shift of nite typ e. Trans. Amer. Math. Soc.. 306, 71-114 W. H. Carlisle (1971). Residual finiteness of finitely generated commutative semigroups. Pacific J. Math.. 36, 99-101 T. Ceccherini-Silb erstein and M. Coornaert On surjunctive monoids. Int. J. Algebra Comput., (Online Ready DOI: 10.1142/s0218196715500113 ), arXiv:1409.1340. T. Evans (1970). Residually finite semigroups of endomorphisms. J. London Math. Soc. (2). 2, 719-721 G. A. Hedlund (1969). Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory. 3, 320-375 K. A. Hirsch (1946). On in nite soluble groups. III. Proc. London Math. Soc. (2). 49, 184-194 G. Lallement (1971). On a theorem of Malcev. Proc. Amer. Math. Soc.. 30, 49-54 G. Lallement (1972). On nilp otency and residual finiteness in semigroups. Pacific J. Math.. 42, 693-700 A. I. Mal'cev (1940). On isomorphic matrix representations of infinite groups. Mat. Sbornik. 8, 405-422 A. I. Mal'cev (1958). On homomorphisms onto finite groups,. Ivanov. Gos. Ped. Inst. U. Zap.. 8, 49-60 J. R. Stalling (2005). Notes for Math 257 - Section 1 - Geometric Group Theory. UC Berkeley (unpublished). K. Varadara jan (2001). Some recent results on Hopficity. co-Hopficity and related prop erties, in International Symposium on Ring Theory, (Kyong ju, 1999), Trends Math., Birkhauser Boston, Boston, MA. , 371-392