L. Babai and I. Pak (2000). Strong bias of group generators: an obstacle to the "product replacement algorithm". Pro ceed-ings of the Eleventh Annual ACM-SIAM Symp osium on Discrete Algorithms (San Francisco, CA, 2000), ACM, New
York. , 627-635 F. Celler, C. R. Leedham-Green, S. Murray, A. Niemeyer and E. A. OBrien (1995). Generating random elements of a finite group. Comm. Algebra. 23, 4931-4948 E. Crestani and A. Lucchini Bias of group generators in the solvable case. Israel J. Math., to app ear, DOI:
10.1007/s11856-015-1159-7. E. Crestani, G. De Franceschi and A. Lucchini Probability and bias in generating supersoluble groups. Proc. Edinb. Math. Soc , to appear. J. D. Dixon (1969). The probability of generating the symmetric group. Math. Z.. 110, 199-205 M. D. Fried and M. Jarden (1986). Field Arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York. 11 P. Hall (1936). The Eulerian functions of a group. Quart. J. Math.. 7, 134-151 W. M. Kantor and A. Lubotzky (1990). The probability of generating a finite classical group. Geom. Dedicata. 36 (1), 67-87 M. W. Liebeck and A. Shalev (1995). The probability of generating a finite simple group. Geom. Dedicata. 56 (1), 103-113 A. Lucchini (2005). The X-Dirichlet polynomial of a finite group. J. Group Theory. 8 (2), 171-188 A. Lucchini, F. Menegazzo and M. Morigi (2006). On the probability of generating prosoluble groups. Israel J. Math.. 155, 93-115 A. Lubotzky and I. Pak (2001). The pro duct replacement algorithm and Kazhdan's
property (T). J. Amer. Math. Soc.. 14 (2), 347-363 M. Morigi (2006). On the probability of generating free prosoluble groups of small rank. Israel J. Math.. 155, 177-123 A. Mann (1996). Positively finitely generated groups. Forum. Math.. 8 (4), 429-459 A. Mann and A. Shalev (1996). Simple groups, maximal subgroups, and probabilistic
aspects of profinite groups. Israel J. Math.. 96 part B, 449-468 N. E. Menezes, M. Quick and C. M. Roney-Dougal (2013). The probability of generating a nite simple group. Israel J. Math.. 198 (1), 371-392 I. Pak (2001). What do we know about the product replacement algorithm. in Groups and computation, I I I, de Gruyter, Berlin. , 301-347 M. Pinter (2010). The existence of an inverse limit of an inverse system of measure spaces - a purely measurable case. Acta Math. Hungar.. 126 (1-2), 65-77