Quasirecognition by prime graph of U3(q) where 2 < q = pα < 100

Document Type : Research Paper

Authors

1 Islamic Azad University

2 Tarbiat Modares University

Abstract

Let $G $ be a finite group and let $\Gamma(G)$ be the prime graph‎ ‎of G‎. ‎Assume $2 < q = p^{\alpha} < 100$‎. ‎We determine finite groups‎ ‎G such that $\Gamma(G) = \Gamma(U_3(q))$ and prove that if $q \neq‎ ‎3‎, ‎5‎, ‎9‎, ‎17$‎, ‎then $U_3(q)$ is quasirecognizable by prime graph‎, ‎i.e‎. ‎if $G$ is a finite group with the same prime graph as the‎ ‎finite simple group $U_3(q)$‎, ‎then $G$ has a unique non-Abelian‎ ‎composition factor isomorphic to $U_3(q)$‎. ‎As a consequence of our‎ ‎results‎, ‎we prove that the simple groups $U_{3}(8)$ and $U_{3}(11)$‎ ‎are $4-$recognizable and $2-$recognizable by prime graph‎, ‎respectively‎. ‎In fact‎, ‎the group $U_{3}(8)$ is the first example‎ ‎which is a $4-$recognizable by prime graph‎.

Keywords

Main Subjects


Z. Akhlaghi, M. Khatami and B. Khosravi (2009). Quasirecogniton by prime graph of the simple group $^{2}F_{4}(q)$. Acta. Math. Hungar.. 122 (4), 387-397 M. R. Aleeva (2002). On the composition factors of finite groups having the same set of element orders as the group $U_{3}(q)$. Siberian. Math. J.. 43, 195-211 O. A. Alekseeva and A. S. Kondrat$'$ev (2003). Quasirecognition of one class of finite simple groups by the set of element orders. Siberian. Math. J.. 44 (2), 195-207 A. Babai , B. Khosravi and N. Hasani (2009). Quasirecogniton by prime graph of $^{2}D_{p}(3)$ where $p = 2^{n} + 1 geq 5$ is a prime. Bull. Malays. Math. Sci. Soc. (2). 32 (2), 343-350 J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson (1985). Atlas of finite groups. Clarendon press, Oxford. M. Foroudi Ghasemabadi and A. Iranmanesh (2011). Quasirecognition by the prime graph of the group $C_{n}(2)$ where $ n neq 3 $ is odd. Bull. Malays. Math. Sci. Soc. (2). 34 (3), 529-540 M. Foroudi Ghasemabadi (2011). Characterization of some finite nonabelian simple groups by prime graph. Ph.D. Thesis, Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran. The GAP Group GAP – Groups, Algorithms, and Programming. Version 4.4.12; 2008, (http://www.gap-system.org). M. Hagie (2003). The prime graph of a sporadic simple group. Comm. Algebra. 31 (9), 4405-4424 H. He and W. Shi (2009). Recognition of some finite simple groups of type $ D_{n}(q) $ by spectrum. Internat. J. Algebra Comput.. 19 (5), 681-698 B. Huppert (1967). Endliche Gruppen I. Springer-Verlag, New York. N. Iiyori and H. Yamaki (1993). Prime graph components of the simple groups of Lie type over the field of even characteristic. Prime graph components of the simple groups of Lie type over the field of even characteristic. 155, 335-343 C. Janson, K. Lux, R. A. Parker and R. A. Wilson (1995). An atlas of Brauer characters. Clarendon Press, Oxford. B. Khosravi and S. S. Salehi Amiri (2006). On the prime graph of $L_{2}(q)$ where $q = p^{alpha}<100$. Quasigroups Related Systems. 14, 179-190 B. Khosravi, B. Khosravi and B. Khosravi (2007). Groups with the same prime graph as a textit{CIT} simple group. Houston J. Math.. 33 (4), 967-977 A. Khosravi and B. Khosravi (2007). Quasirecognition by prime graph of the simple group $^{2}G_{2}(q)$. Sibirsk. Mat. Zh.. 48 (3), 570-577 B. Khosravi, B. Khosravi and B. Khosravi (2007). On the prime graph of $ PSL(2, p) $ where $p > 3$ is a prime number. Acta Math. Hungar.. 116 (4), 295-307 B. Khosravi and A. Zarea Moghanjoghi (2007). Quasirecognition by prime graph of some alternating groups. Int. J. Contemp. Math. Sci.. 2 (25-28), 1351-1358 A. Khosravi and B. Khosravi (2008). $2-$Recognizability by prime grph of $ PSL(2,p^{2})$. Siberian Math. J.. 49 (4), 749-757 B. Khosravi (2008). $n-$recognition by prime graph of the simple group $ PSL(2,q) $. J. Algebra Appl.. 7, 735-748 Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi (2008). A characterization of the finite simple group $L_{16}(2)$ by its prime graph. Manuscripta Math.. 126 (1), 49-58 B. Khosravi (2009). Some characterizations of $L_{9}(2)$, related to its prime graph. Publ. Math. Debrecen. 75, 375-385 B. Khosravi (2009). Quasirecognition by prime graph of $L_{10}(2)$. Siberian Math. J.. 50, 355-359 B. Khosravi and A. Babai (2011). Quasirecogniton by prime graph of $F_{4}(q)$ where $q = 2^{n} > 2$. Monatsh. Math.. 162 (3), 289-296 B. Khosravi and H. Moradi (2011). Quasirecognition by prime graph of finite simple groups $L_{n}(2)$ and $U_{n}(2)$. Acta Math. Hungar.. 132 (1-2), 140-153 B. Khosravi, Z. Akhlaghi and M. Khatami (2011). Quasirecognition by prime graph of the simple group $D_{n}(3)$. Publ. Math. Debrecen. 78 (2), 469-484 P. Kleidman and M. Liebeck (1990). The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge. A. S. Kondtrat$'$ev (1990). Prime graph components of finite groups. Math. USSR-Sb.. 67 (1), 235-247 M. S. Lucido (1999). Prime graph components of finite almost simple groups. Rend. Sem. Mat. Univ. Padova. 102, 1-22 M. S. Luchido and A. R. Moghaddamfar (2004). Groups with complete prime graph connected components. J. Group Theory. 7 (3), 373-384 V. D. Mazurov (1998). Recognition of finite groups by a set of orders of their elements. Algebra and Logic. 37 (6), 371-379 V. D. Mazurov (2004). Characterizations of groups by arithmetic properties. Algebra Colloq.. 11 (1), 129-140 V. D. Mazurov and A. V. Zavarnitsine (2007). On element orders in coverings of the simple groups $L_{n}(q)$ and $U_{n}(q)$. Proc. Steklov Inst. Math.. 1, 145-154 Z. Momen and B. Khosravi (2012). On $r-$recognition by prime graph of $B_{p}(3)$ where $p$ is an odd prime. Monatsh. Math.. 166 (2), 239-253 D. S. Passman (1968). Permutation Groups. W. A. Benjamin Inc., New York. C. E. Praeger and W. Shi (1994). A characterization of some alternating and symmetric groups. Comm. Algebra. 22 (5), 1507-1530 D. J. S. Robinson (1982). A course on the theory of groups. Springer-Verlag, New York. A. V. Vasil$'$ev and E. P. Vdovin (2005). An adjacency criterion for the prime graph of a finite simple group. Algebra Logic. 44 (6), 381-406 A. V. Vasil$'$ev and I. B. Gorshkov (2009). On recognition of finite simple groups with connected prime graph. Siberian Math. J.. 50 (2), 233-238 A. V. Vasil$'$ev and E. P. Vdovin (2011). Cocliques of maximal size in the prime graph of a finite simple group. Algebra Logic. 50 (4), 291-322 J. S. Williams (1981). Prime graph components of finite groups. J. Algebra. 69, 487-513 A. V. Zavarnitsin (2006). Recognition of finite groups by the prime graph. Algebra Logic. 45 (4), 220-231 A. V. Zavarnitsin (2009). Finite simple groups with narrow prime spectrum. Sib. Elektron. Mat. Izv.. 6, 1-12 A. V. Zavarnitsine (2010). Uniqueness of the prime graph of $L_{16}(2)$. Sib. Elektron. Mat. Izv.. 7, 119-121