Automorphisms of a finite $p$-group with cyclic Frattini subgroup

Document Type : Research Paper


Payame Noor University


Let $G$ be a group and $Aut^{\Phi}(G)$ denote the group of all automorphisms of $G$ centralizing $G/\Phi(G)$ elementwise‎. ‎In this paper‎, ‎we characterize the finite $p$-groups $G$ with cyclic Frattini subgroup for which $|Aut^{\Phi}(G):Inn(G)|=p$‎.


Main Subjects

[1] J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois. J. Math., 9 (1965) 137–143.
[2] T. R. Berger, L. G. Kovács and M. F. Newman, Groups of prime power order with cyclic Frattini subgroup, Nederl. Acad. Westensch. Indag. Math., 83 (1980) 13–18.
[3] A. Caranti and C.M. Scoppola, Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup, Arch. Math., 56 (1991) 218–227.
[4] M. J. Curran and D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra, 29 (2001) 2081–2087.
[5] S. Fouladi, A. R. Jamali and R. Orfi, On the automorphism group of a finite p-group with cyclic Frattini subgroup, Math. Proc. Royal Irish Academy, 108A (2008) 165–175.
[6] The GAP Group, GAP-Groups, Algorithms and Programing, Version 4.4, 2005, (
[7] D. J. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1968.
[8] B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften Springer-Verlag, 134, Berlin, 1967.
[9] M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an abelian automorphism group, Comm. Algebra, 23 (1995) 2045–2065.
[10] O. Müller, On p-automorphisms of finite p-groups, Arch. Math., 32 (1979) 533–538.