The Fibonacci-circulant sequences in the binary polyhedral groups

Document Type : Research Paper


1 Department of Mathematics, Faculty of Science, Atatürk University, 25240, Erzurum, TURKEY

2 Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100, Kars, TURKEY


In 2017 Deveci et al‎. ‎defined the Fibonacci-circulant sequences of the first and second kinds as shown‎, ‎respectively:‎
$x_n^1 = -x_(n-1)^1+x_(n-2)^1-x_(n-3)^1$ for $n≥4$,where $x_1^1=x_2^1=0$ and $x_3^1=1$ 


$x_n^2 = -x_(n-3)^2-x_(n-4)^2+x_(n-5)^2 for n≥6$, where $x_1^2=x_2^2=x_3^2=x_4^2=0$ and $x_5^2=1$
‎Also‎, ‎they extended the Fibonacci-circulant sequences of the first and second kinds to groups‎. ‎In this paper‎, ‎we obtain the periods of the Fibonacci-circulant sequences of the first and second kinds in the binary polyhedral groups‎.


Main Subjects

[1] H. Aydın and G. C. Smith, Finite p-quotients of some cyclically presented groups, J. London Math. Soc. (2), 49
(1994) 83–92.
[2] C. M. Campbell and P. P. Campbell, The Fibonacci lengths of binary polyhedral groups and related groups, Congr.
Numer., 194 2009 95–102.
[3] C. M. Campbell, H. Doostie and E. F. Robertson, Fibonacci length of generating pairs in groups, Applications of
Fibonacci Numbers, Kluwer Acad. Publ., 3 (1990) 27–35.
[4] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups,3 rd edition, Springer, Berlin,
[5] O. Deveci, On the Fibonacci-circulant p-sequences, Util. Math., 108 (2018) 107–124.
[6] O. Deveci, E. Karaduman and C. M. Campbell, The Fibonacci-circulant sequences and their applications, Iranian
J. Sci. Technol. Trans. A: Sci., 41 (2017) 1033–1038.
[7] O. Deveci, The Pell-circulant sequences and their applications, Maejo Int. J. Sci. Technol., 10 (2016) 284–293.
[8] O. Deveci and E. Karaduman, The Pell sequences in finite groups, Util. Math., 96 (2015) 263–276.
[9] O. Deveci, E. Karaduman and G. Saglam, The Jacobsthal sequences in finite groups, Bull. Iranian Math. Soc.y, 42
(2016) 79–89.
[10] H. Doostie and M. Hashemi, Fibonacci lengths involving the Wall number k(n), J. Appl. Math. Comput., 20, (2006)
[11] R. Dikici and G. C. Smith, Fibonacci sequences in finite nilpotent groups, Turkish J. Math., 21, (1997) 133–142.
[12] S. W. Knox, Fibonacci sequences in finite groups, Fibonacci Quart., 30 (1992) 116–120.
[13] E. Ozkan, “Truncated Lucas sequences and its period”, Appl. Math. and Comput., 232 (2014) 285—291.
[14] S. Tas and E. Karaduman, The Padovan sequences in finite groups, Chaing Mai J. Sci., 41 (2014) 456–462.
[15] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960) 525–532.
[16] H. J. Wilcox, Fibonacci sequences of period n in groups, Fibonacci Quart., 24 (1986) 356–361. 
Volume 10, Issue 3 - Serial Number 3
September 2021
Pages 97-101
  • Receive Date: 02 January 2020
  • Revise Date: 19 January 2020
  • Accept Date: 28 January 2020
  • Published Online: 01 September 2021