[1] R. Bhatia and J. A. Dias da Silva, Variation of induced linear operators, Linear Algebra Appl., 341 (2002) 391–402.
[2] T. G. Lei, Generalized Schur functions and generalized decompossble symmetric tensors, Linear Algebra Appl., 263
(1997) 311–332.
[3] C. K. Li and T. Y. Tam, Operator properties of T and K(T), Linear Algebra Appl., 401 (2005) 173–191.
[4] C. K. Li and A. Zaharia, Induced operators on symmetry classes of tensors, Trans. Amer. Math. Soc., 342 (2001)
807–836.
[5] R. Merris, Multilinear Algebra, Gordon and Breach Science Publisher, Amsterdam, 1997.
[6] G. Rafatneshan and Y. Zamani, Generalized symmetry classes of tensors, Czechoslovak Math. J., Published online
July 8 (2020) 1–13.
[7] G. Rafatneshan and Y. Zamani, On the orthogonal basis of the generalized symmetry classes of tensors, to submitted.
[8] M. Ranjbari and Y. Zamani, Induced operators on symmetry classes of polynomials, Int. J. Group Theory, 6 no. 2
(2017) 21–35.
[9] Y. Zamani and S. Ahsani, On the decomposable numerical range of operators, Bull. Iranian. Math. Soc., 40 no. 2
( 2014) 387–396.
[10] Y. Zamani and M. Ranjbari, Representations of the general linear group over symmetry classes of polynomials,
Czechoslovak Math. J., 68 no. 143 (2018) 267–276.