We call $H$ an $SS$-embedded subgroup of $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is subnormal in $G$ and $H\cap T\leq H_{sG}$, where $H_{sG}$ is the maximal $s$-permutable subgroup of $G$ contained in $H$. In this paper, we investigate the influence of some $SS$-embedded subgroups on the structure of a finite group $G$. Some new results were obtained.
W. E. Deskins (1963). On quasinormal subgroups of finite groups. Math. Z.. 82, 125-132 D. Gorenstein (1968). Finite Groups. Chelsea Publishing Company, New
York. W. B. Guo, K. P. Shum and A. N. Skiba (2009). On solubility and
supersolubility of some classes of finite groups. Sci. China
(Ser. A). 52, 272-286 W. B. Guo, K. P. Shum and F. Y. Xie (2011). Finite groups with some weakly
$s$-supplemented subgroups. Glasg. Math. J.. 53, 211-222 W. B. Guo, Y. Wang and L. Shi (2008). Nearly $s$-normal subgroups of a
finite group. J. Algebra Discrete Struct.. 6, 95-106 B. Huppert (1967). Endliche Gruppen Vol. I. Springer, New York. O. H. Kegel (1962). Sylow-Gruppen und abnormalteiler endlicher Gruppen. Math. Z.. 78, 205-221 I. A. Malinowska (2012). Finite groups with $sn$-embedded or $s$-embedded
subgroups. Acta Math. Hungar.. 136, 76-89 D. J. S. Robinson (1993). A Course in the Theory of Group. Springer-Verlag, New York-Berlin. A. N. Skiba (2007). On weakly $s$-permutable subgroups of finite groups. J. Algebra. 315, 192-209 Y. M. Wang (1996). $C$-normality of groups and its properties. J.
Algebra. 180, 954-965 Y. M. Wang (1996). $C$-normality and solvability of groups. J. Pure
Appl. Algebra. 110, 315-320 Y. Wang and W. B. Guo (2010). Nearly $s$-normality of groups and its
properties. Comm. Algebra. 38, 3821-3836
Zhao, T. (2013). Finite groups with some $SS$-embedded subgroups. International Journal of Group Theory, 2(3), 63-70. doi: 10.22108/ijgt.2013.2543
MLA
Tao Zhao. "Finite groups with some $SS$-embedded subgroups". International Journal of Group Theory, 2, 3, 2013, 63-70. doi: 10.22108/ijgt.2013.2543
HARVARD
Zhao, T. (2013). 'Finite groups with some $SS$-embedded subgroups', International Journal of Group Theory, 2(3), pp. 63-70. doi: 10.22108/ijgt.2013.2543
VANCOUVER
Zhao, T. Finite groups with some $SS$-embedded subgroups. International Journal of Group Theory, 2013; 2(3): 63-70. doi: 10.22108/ijgt.2013.2543