On the automorphism groups of some Leibniz algebras

Document Type : Ischia Group Theory 2020/2021


1 Department of Geometry and Algebra, Oles Honchar Dnipro National University, 72 Gagarin Ave., Dnipro, Ukraine

2 Department of Mathematics and Natural Sciences, College of Letters and Sciences, National University, USA


We study the automorphism groups of finite-dimensional cyclic Leibniz algebras. In this connection, we consider the relationships between groups, modules over associative rings and Leibniz algebras.


Main Subjects

[1] S. Albeverio, Sh. A. Ayupov and B. A. Omirov, On nilpotent and simple Leibniz algebras, Comm. Algebra, 33 no. 1 (2005) 159–172.
[2] S. Albeverio, Sh. A. Ayupov and B. A. Omirov, Cartan subalgebras, weight spaces, and criterion of solvability of finite dimensional Leibniz algebras, Rev. Mat. Complut., 19 no. 1 (2006) 183–195.
[3] Sh. Ayupov, K. Kudaybergenov, B. Omirov and K. Zhao, Semisimple Leibniz algebras, their derivations and auto-morphisms, Linear Multilinear Algebra, 68 no. 10 (2020) 2005–2019.
[4] Sh. A. Ayupov, B. A. Omirov and I. S. Rakhimov, Leibniz Algebras: Structure and Classification, CRC Press, Taylor & Francis Group, Boca Raton, 2020.
[5] A. Blokh, On a generalization of the concept of Lie algebra, (in Russian), Dokl. Akad. Nauk, 165 no. 3 (1965) 471–473.
[6] V. A. Chupordia, L. A. Kurdachenko and I. Ya. Subbotin, On some “minimal” Leibniz algebras, J. Algebra Appl., 16 no. 05 (2017) 16 pp.
[7] V. A. Chupordia, A. A. Pypka, N. N. Semko and V. S. Yashchuk, Leibniz algebras: a brief review of current results, Carpathian Math. Publ., 11 no. 2 (2019) 250–257.
[8] D. Barnes, Some theorems on Leibniz algebras, Comm. Algebra, 39 no. 7 (2011) 2463–2472.
[9] D. Barnes, Schunck classes of soluble Leibniz algebras, Comm. Algebra, 41 no. 11 (2013) 4046–4065.
[10] S. Gómez-Vidal, A. Kh. Khudoyberdiyev and B.A. Omirov, Some remarks on semisimple Leibniz algebras, J. Algebra, 410 (2014) 526–540.
[11] V. V. Kirichenko, L. A. Kurdachenko, A. A. Pypka and I. Ya. Subbotin, Some aspects of Leibniz algebra theory, Algebra Discrete Math., 24 no. 1 (2017) 1–33.
[12] L. A. Kurdachenko, J. Otal and A. A. Pypka, Relationships between factors of canonical central series of Leibniz algebras, Eur. J. Math., 2 no. 2 (2016) 565–577.
[13] L. A. Kurdachenko, J. Otal and I. Ya. Subbotin, On some properties of the upper central series in Leibniz algebras, Comment. Math. Univ. Carolin., 60 no. 2 (2019) 161–175.
[14] L. A. Kurdachenko, N. N. Semko and I. Ya. Subbotin, The Leibniz algebras whose subalgebras are ideals, Open Math., 15 no. 1 (2017) 92–100.
[15] L. A. Kurdachenko, N. N. Semko and I. Ya. Subbotin, Applying group theory philosophy to Leibniz algebras: some new developments, Adv. Group Theory Appl., 9 (2020) 71–121.
[16] L. A. Kurdachenko, I. Ya. Subbotin and N. N. Semko, From groups to Leibniz algebras: common approaches, parallel results, Adv. Group Theory Appl., 5 (2018) 1–31.
[17] L. A. Kurdachenko, I. Ya. Subbotin and V. S. Yashchuk, The Leibniz algebras whose subideals are ideals, J. Algebra Appl., 17 no. 8 (2018).
[18] L. A. Kurdachenko, I. Ya. Subbotin and V. S. Yashchuk, On the endomorphisms and derivations of some Leibniz algebras, arXiv:2104.05922 (2021).
[19] M. Ladra, I. M. Rikhsiboev and R. M. Turdibaev, Automorphisms and derivations of Leibniz algebras, Ukrainian Math. J., 68 no. 7 (2016) 1062–1076.
[20] J.-L. Loday, Cyclic homology, Springer-Verlag, Berlin, 1992.
[21] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbras de Leibniz, Enseign. Math., 39 (1993) 269–293.
[22] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 no. 1 (1993) 139–158.