On some new developments in the theory of subgroup lattices of groups

Document Type : Ischia Group Theory 2020/2021


Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II Napoli, Italy


A rather natural way for trying to obtain a lattice-theoretic characterization of a class of groups ${\mathcal X}$ is to replace the concepts appearing in the definition of ${\mathcal X}$ by lattice-theoretic concepts. The first to use this idea were Kontorovi\v{c} and Plotkin who in 1954 introduced the notion of modular chain in a lattice, as translation of a central series of a group, to determine a lattice-theoretic characterization of the class of torsion-free nilpotent groups. The aim of this paper is to present a recent application of this translation method to some generalized nilpotency properties.


Main Subjects

[1] R. Baer, Endlichkeitskriterien für Kommutatorgruppen, Math. Ann., 124 (1952) 161–177.
[2] G. Busetto, Proprietà di immersione dei sottogruppi modulari localmente ciclici nei gruppi, Rend. Sem. Mat. Univ.
Padova, 63 (1980) 269–284.
[3] M. De Falco, F. de Giovanni and C. Musella, The Schur property for subgroup lattices of groups, Arch. Math. (Basel),
91 (2008) 97–105.
[4] M. De Falco, F. de Giovanni and C. Musella, Modular chains in infinite groups, Arch. Math. (Basel), 117 (2021)
[5] P. Hall, Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc., 52 (1956) 611–616.
[6] N. S. Hekster, On the structure of n-isoclinism classes of groups, J. Pure Appl. Algebra, 40 (1986) 63–85.
[7] N. Ito, Note on (LM)-groups of finite orders, Kodei Math. Sem. Rep., (1951) 1–6.
[8] K. Iwasawa, On the structure of infinite M -groups, Jap. J. Math., 18 (1943) 709–728.
[9] P. G. Kontorovič and B. I. Plotkin, Lattices with an additive basis, Mat. Sb., 35 (1954) 187–192.
[10] O. Ore, Structures and group theory II, Duke Math. J., 4 (1938) 247–269.
[11] E. Previato, Una caratterizzazione reticolare dei gruppi risolubili finitamente generati, Ist. Veneto Sci. Lett. Arti
Atti Cl. Sci. Fis. Mat. Natur., 136 (1978) 7–11.
[12] R. Schmidt, Eine verbandstheoretische Charakterisierung der aufl´’osbaren und der öberauflösbaren endlichen Grup-
pen, Archiv Math., 19 (1968) 449–452.
[13] R. Schmidt, Modulare Untergruppen endlicher Gruppen, Illinois J. Math., 13 (1969) 358–377.
[14] R. Schmidt, Endliche Gruppen mit vielen modularen Untergruppen, Abh. Math. Se. Univ. Hamburg, 34 (1970)
[15] R. Schmidt, Gruppen mit modularem Untergruppenverband, Arch. Math. (Basel), 46 (1986) 118–124.
[16] R. Schmidt, Subgroup Lattices Of Groups, De Gruyter Expositions in Mathematics, 14, Walter de Gruyter & Co.,
Berlin, 1994.
[17] R. Schmidt, Finite groups with modular chains, Colloquium Math., 131 (2013) 195–208.
[18] R. Schmidt, Lattice-theoretic characterizations of classes of groups, Integrable systems and algebraic geometry, 2,
367–382, London Math. Soc. Lecture Note Ser., 459, Cambridge Univ. Press, Cambridge, 2020.
[19] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene linear Substitutionen, J. Reine Angew.
Math., 127 (1904) 20–50.
[20] S. Stonehewer, Permutable subgroups of some finite p-groups, J. Austral. Math. Soc., 16 (1973) 90–97.
[21] G. Zacher, Una relazione di normalità sul reticolo dei sottogruppi di un gruppo, Ann. Mat. Pura Appl., 131 (1982)
[22] G. Zacher, Reticoli di sottogruppi normali e struttura normale di un gruppo, Ist. Veneto Sci. Lett. Arti Atti Cl. Sci.
Fis. Mat. Natur., 157 (1999) 37–41.
Volume 12, Issue 3 - Serial Number 3
Proceedings of the Ischia Group Theory (2020/2021) - Part 3
September 2023
Pages 153-162
  • Receive Date: 29 December 2021
  • Revise Date: 11 March 2022
  • Accept Date: 23 May 2022
  • Published Online: 01 September 2023