[1] M. Asaad, A. A. Heliel and M. M. Al-Mosa Al-Shomrani, On weakly H -subgroups of finite groups, Comm. Algebra, 40 (2012) 3540–3550.
[2] Y. Berkovich and I. M. Isaacs, p-Supersolvability and actions on p-groups stabilizing certain subgroups, J. Algebra,
414 (2014) 82–94.
[3] M. Bianchi, A. Gillio Berta Mauri, M. Herzog and L. Verardi, On finite solvable groups in which normality is a
transitive relations, J. Group Theory, 3 (2000) 147–156.
[4] R. Chen, X. Li and X. Zhao, On weakly H -subgroups of finite groups II∗ , Comm. Algebra, 50 (2022) 4009–4015.
[5] R. J. Flores and R. M. Foote, Strongly closed subgroups of finite groups, Adv. Math, 222 (2009) 453–484.
[6] D. Goldschmidt, 2-fusion in finite groups, Ann. of Math, 99 (1974) 70–117.
[7] D. Goldschmidt, Strongly closed 2-subgroups of finite groups, Proc. Conf. on Finite Groups (Univ. Utah, Park City,
Utah), (1975) 109–110.
[8] D. Goldschmidt, Strongly closed 2-subgroups of finite groups, Ann. of Math, 103 (1975) 475–489.
[9] D. Gorenstein, Finite Groups, Harper and Row, New York-London, 1968
[10] Y. Guo and I. M. Isaacs, Conditions on p-subgroups implying p-nilpotence or p-supersolvability, Arch. Math, 105
(2015) 215–222.
[11] I. M. Isaacs, Finite Group Theory, 92, American Mathematical Society, Providence, 2008
[12] S. Li and X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra, 36 (2008) 2333–2340.
[13] Z. Shen and N. Du, Finite Groups with H -Subgroups, Algebra Colloq., 20 (2013) 421–426.
[14] J. G. Thompso, Normal p-complements for finite groups, J. Algebra, 1 (1964) 43–46.
[15] H. Yu, Some sufficient and necessary conditions for p-supersolvablity and p-nilpotence of a finite group, J. Algebra Appl, 16 (2017) 1750052.
[16] H. Yu, X. Xu and G. Zhang, On generalized SΦ-supplemented subgroups of finite groups, J. Algebra Appl, 18 (2019) 1950204.
[17] H. Yu, X. Xu and G. Zhang, A note on S-semipermutable and S-permutably embedded subgroups of finite groups, Ricerche mat., 105 (2022). https://doi.org/10.1007/s11587-022-00717-1.