Non-inner automorphisms of order $p$ in finite $p$-groups of coclass $4$ and $5$

Document Type : Research Paper

Author

Ms. Komma Patali Ph.D. Candidate School of Mathematics, IISER Thiruvananthapuram, Thiruvaanthapuram, India

Abstract

A long-standing conjecture asserts that every finite nonabelian $p$-group has a non-inner automorphism of order $p$. This paper proves the conjecture for finite $p$-groups of coclass $4$ and $5$ ($p\ge 5$). We also prove the conjecture for an odd order nonabelian $p$-group $G$ with cyclic center satisfying $C_G(G^p\gamma_3(G))\cap Z_3(G)\le Z(\Phi(G))$.

Keywords

Main Subjects


[1] A. Abdollahi, Finite p-groups of class 2 have noninner automorphisms of order p, J. Algebra, 312 (2007) 876–879.
[2] A. Abdollahi, and S. Mohsen Ghoraishi, On noninner automorphisms of 2-generator finite p-groups, Comm. Algebra, 45 (2017) 3636–3642.
[3] A.Abdollahi, Powerful p-groups have non-inner automorphisms of order p and some cohomology, J. Algebra, 323 (2010) 779–789.
[4] A. Abdollahi, S. M. Ghoraishi and B. Wilkens, Finite p-groups of class 3 have noninner automorphisms of order p,
Beitr. Algebra Geom., 54 (2013) 363–381.
[5] A. Abdollahi, S. M. Ghoraishi, Y. Guerboussa, M. Reguiat, and B. Wilkens, Noninner automorphisms of order p
for finite p-groups of coclass 2, J. Group Theory, 17 (2014) 267–272.
[6] Y. Berkovich, Groups of prime power order, 1, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter
GmbH & Co. KG, Berlin, 2008.
[7] G. Cutolo, On a question about automorphisms of finite p-groups, J. Group Theory, 9 (2006) 231–250.
[8] M. Deaconescu and G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra, 250 (2002)
283–287.
[9] G. A. Fernández-Alcober, J. González-Sánchez and A. Jaikin-Zapirain, Omega subgroups of pro-p groups, Israel J.
Math., 166 (2008) 393–412.
[10] W. Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, J. Algebra, 4 (1966) 1–2.
[11] S. Mohsen Ghoraishi, On noninner automorphisms of finite nonabelian p-groups, Bull. Aust. Math. Soc., 89 (2014) 202–209.
[12] S. Mohsen Ghoraishi, A note on automorphisms of finite p-groups, Bull. Aust. Math. Soc., 87 (2013) 24–26.
[13] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, 143, Springer-Verlag,
Berlin-New York, 1970.
[14] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag,
Berlin-New York, 1967.
[15] A. R. Jamali and M. Viseh, On the existence of noninner automorphisms of order two in finite 2-groups, Bull. Aust. Math. Soc., 87 (2013) 278–287.
[16] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Mathematical Society Monographs, New Series, 27, Oxford Science Publications, Oxford University Press, Oxford, 2002.
[17] H. Liebeck, Outer automorphisms in nilpotent p-groups of class 2, J. London Math. Soc., 40 (1965) 268–275.
[18] A. Mann, Groups with few class sizes and the centralizer equality subgroup, Israel J. Math., 142 (2004) 367–380.
[19] V. D. Mazurov and E. I. Khukhro (eds.), Unsolved problems in group theory, The Kourovka notebook, augmented ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 1995.
[20] J. J. Rotman, An introduction to homological algebra, second ed., Universitext, Springer, New York, 2009.
[21] M. Ruscitti, L. Legarreta and M. K. Yadav, Non-inner automorphisms of order p in finite p-groups of coclass 3,
Monatsh. Math., 183 (2017) 679–697.
[22] P. Schmid, A cohomological property of regular p-groups, Math. Z., 175 (1980) 1–3.
[23] M. Shabani-Attar, Existence of noninner automorphisms of order p in some finite p-groups, Bull. Aust. Math. Soc., 87 (2013) 272–277.
  • Receive Date: 22 November 2022
  • Revise Date: 06 April 2023
  • Accept Date: 08 April 2023
  • Published Online: 01 March 2024