[1] C. M. Campbell, E. F. Robertson, N. Ruškuc and R. M. Thomas, Semigroup and group presentations, Bull. London
Math. Soc., 27 (1995) 46–50.
[2] A. Cherubini and A. Varisco, Quasicommutative semigroups and σ-reflexive semigroups, Semigroup Forum, 19
(1980) 313–321.
[3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Amer. Math. Soc., I (1961).
[4] P. Lescanne, Term Rewriting Systems and Algebra, 7th International Conference on Automated Deduction, CADE
1984, Lecture Notes in Computer Science, Springer, 170 (1984) 166–174.
[5] N. P. Mukherjee, Quasi commutative semigroups I, Czechoslov. Math. J., 22 (1972) 449–453.
[6] T. Quinn-Gregson, Homogeneity of inverse semigroups, Int. J. of Algebra and Com., 28 (2018) 837–875.
[7] E. F. Robertson and Y. Ünlü, On semigroup presentations, Proc. Edinburgh Math. Soc., 36 (1993) 55–68.
[8] E. Rodaro and A. Cherubini, Decidability of the word problem in Yamamura’s HNN extensions of finite inverse
semigroups, Semigroup Forum, 77 (2008) 163–186.
[9] M. R. Sorouhesh and H. Dosstie, Quasi-commutative semigroups of finite order related to Hamiltonian groups, Bull. Korean Math. Soc., 52 (2015) 239–246.
[10] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR, 84 (1952) 1119–1122 (Russian).
[11] The GAP Group, GAP-Groups, Algorithms and programming, Version 4.11.1 (2021). http://www.gapsystem.org.