[1] Y. Berkovich, Groups of prime power order, 1, With a foreword by Zvonimir Janko, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
[2] L. Crew, On the characterization of the numbers n such that any group of order n has a given property P, arXiv:1501.03170 (2015).
[3] L. E. Dickson, Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc., 6 no. 2 (1905) 198–204.
[4] J. A. Gallian and D. Moulton, When is Zn the only group of order n?, Elem. Math., 48 no. 3 (1993) 117–119.
[5] D. Jungnickel, On the uniqueness of the cyclic group of order n, Amer. Math. Monthly, 99 no. 6 (1992) 545–547.
[6] T. W. Müller, An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra, 300 no. 1 (2006) 10–15.
[7] G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Arch. Math. (Basel), 10 (1959) 331–343.
[8] L. Rédei, Das schiefe Produkt in der Gruppentheorie, Comment. Math. Helv., 20 (1947) 225–264.
[9] D. J. S. Robinson, A course in the theory of groups, Second edition, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996.
[10] A. Russo, On numbers which are orders of nilpotent groups only, Boll. Unione Mat. Ital. (9), 5 no. 1 (2012) 121–124.