A group $G$ is said to be a C-tidy group if for every element $x \in G \setminus K(G)$, the set $Cyc(x)=\lbrace y \in G \mid \langle x, y \rangle \; {\rm is \; cyclic} \rbrace$ is a cyclic subgroup of $G$, where $K(G)=\underset{x \in G}\bigcap Cyc(x)$. In this short note we determine the structure of finite C-tidy groups.
A. Abdollahi and A. M. Hassanabadi (2007). Non-cyclic graph of a group. Comm. Algebra. 35, 2057-2081 S. J. Baishya (2013). A note on finite C-tidy groups. Int. J. Group Theory. 2 (3), 9-17 L. Mousavi (2011). $n$-Cyclicizer groups. Bull. Iranian Math. Soc.. 37 (1), 161-170 D. Patrick and E. Wepsic (1991). Cyclicizers, centralizers and normalizers. Rose-Hulman Institute of Technology, Indiana, USA, Technical report, MS-TR 91-05. K. O'Bryant, D. Patrick, L. Smithline and E. Wepsic (1992). Some facts about cycels and tidy groups. Rose-Hulman Institute of Technology, Indiana, USA, Technical report, MS-TR 92-04. R. Schmidt (1970). Zentralisatorverbande endlicher Gruppen. Rend. Sem. Mat. Univ. Padova. 44, 97-131 R. Schmidt (1994). Subgroup Lattices of Groups. De Gruyter, Berlin.