On Artin groups admitting retractions to parabolic subgroups

Document Type : Research Paper

Authors

1 SECIHITI - Unidad Oaxaca del Instituto de Matemáticas de la UNAM, Oaxaca, Mexico

2 Instituto de Matemáticas de la Universidad de Sevilla (IMUS) and Departamento de Algebra, Facultad de Matemáticas, Universidad de Sevilla, Seville, Spain

3 School of Engineering, Mathematics and Physics, University of East Anglia, Norwich, United Kingdom

10.22108/ijgt.2025.143611.1935

Abstract

We generalise the retractions to standard parabolic subgroups for even Artin groups to FC-type Artin groups and other more general families. We prove that these retractions uniquely extend to any parabolic subgroup. We use retractions to generalise the results of Antolín and Foniqi that reduce the problem of intersection of parabolic subgroups to weaker conditions. As a corollary, we characterise coherence for the FC case.

Keywords

Main Subjects


[1] Y. Antol´ın and I. Foniqi, Subgroups of even Artin groups of FC-type, J. Group Theory, 28 no. 2 (2025) 431–462.
[2] Y. Antol´ın and A. Minasyan, Tits alternatives for graph products, J. Reine Angew. Math., 704 (2015) 55–83.
[3] Y. Antol´ın and I. Foniqi, Intersection of parabolic subgroups in even Artin groups of FC-type, Proc. Edinb. Math. Soc. (2), 65 no. 4 (2022) 938–957.
[4] M. Blufstein and L. Paris, Parabolic subgroups inside parabolic subgroups of Artin groups, Proc. Amer. Math. Soc., 151 no. 4 (2023) 1519–1526.
[5] N. Bourbaki, ´ Elements de math´ematique. Fsc. XXXIV. Groupes et alg`ebres de Lie. Chapitre IV: Groupes de Coxeter et syst`emes de Tits. Chapitre V: Groupes engendr´es par des r´eflexions. Chapitre VI: syst`emes de racines, Number 1337 in Actualit´es Scientifiques et Industrielles, Hermann, Paris, 1968 pp. 288.
[6] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, (German), Invent. Math., 17 (1972) 245–271.
[7] R. Charney and M. W. Davis, The k(π, 1)-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc., 8 no. 3 (1995) 597–627.
[8] R. Charney and L. Paris, Convexity of parabolic subgroups in Artin groups, Bull. Lond. Math. Soc., 46 no. 6 (2014) 1248–1255.
[9] C. Concini and M. Salvetti, Cohomology of Coxeter groups and Artin groups, Math. Res. Lett., 7 no. 2 (2000) 213–232.
[10] M. Cumplido, The conjugacy stability problem for parabolic subgroups in Artin groups, Mediterr. J. Math., 19 237 (2022).
[11] M. Cumplido, V. Gebhardt, J. Gonz´alez-Meneses, and B. Wiest, On parabolic subgroups of Artin-Tits groups of spherical type, Adv. Math., 352 (2019) 572–610.
[12] P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc., 79 no. 3 (1999) 569–604.
[13] W. Dicks and M. J. Dunwoody, Groups acting on graphs, 17 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989.
[14] F. Digne, E. Godelle and J. Michel, Retraction to a parabolic subgroup and applications, arXiv preprint arXiv:2407.07459, 2024.
[15] C. Droms, Graph Groups, coherence, and three-manifolds, J. Algebra, 106 no. 2 (1987) 484–489.
[16] E. Godelle, Artin–Tits groups with CAT(0) Deligne complex, J. Pure Appl. Algebra, 208 no. 1 (2007) 39–52.
[17] E. Godelle, Parabolic subgroups of Artin groups of type FC, Pacific J. Math., 208 no. 2 (2003) 243–254.
[18] E. Godelle and L. Paris, k(π, 1) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups, Math. Z., 272 no.3-4 (2012) 1339–1364.
[19] C. Gordon, Artin groups, 3-manifolds and Coherence, Bol. Soc. Mat. Mexicana, 10 (2004) 193–198.
[20] J. Lopez de Gamiz Zearra and C. Mart´ınez P´erez, Around subgroups of Artin groups: derived subgroups and acylindrical hyperbolicity in the even FC-case, arXiv preprint arXiv:2405.16641, 2024.
[21] P. M¨oller, L. Paris and O. Varghese, On parabolic subgroups of Artin groups, Israel J. Math., 261 no. 2 (2023) 809–840.
[22] R. Morris-Wright, Parabolic subgroups in FC-type Artin groups, J. Pure Appl. Algebra, 225 no. 1 (2021) 13 pp.
[23] L. Paris, Parabolic subgroups of Artin groups, J. Algebra, 196 no. 2 (1997) 369–399.
[24] L. Paris, K(π, 1) conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. (6), 23 no. 2 (2014) 361–415.
[25] H. Van der Lek, The homotopy type of complex hyperplane complements, PhD thesis, Katholieke Universiteit te Nijmegen, 1983.
[26] D. T. Wise, The last incoherent Artin group, Proc. Amer. Math. Soc., 141 no. 1 (2013) 139–149.

Articles in Press, Corrected Proof
Available Online from 24 June 2025
  • Receive Date: 07 December 2024
  • Revise Date: 21 May 2025
  • Accept Date: 29 May 2025
  • Published Online: 24 June 2025