The split extension group $A(4)\cong 2^7{:}Sp_6(2)$ is the affine subgroup of the symplectic group $Sp_8(2)$ of index $255$. In this paper, we use the technique of the Fischer-Clifford matrices to construct the character table of the inertia group $2^7{:}(2^5{:}S_{6})$ of $A(4)$ of index $63$.
F. Ali (2001). Fischer-Clifford theory for split and non-split group extensions. PhD Thesis, University of Natal. F. Ali and J. Moori (2004). Fischer-Clifford matrices and character table of the group 2^7{:}Sp_6(2). Int.
J. Math. Game Theory Algebra. 14, 101-121 W. Bosma and J. J. Canon (1994). Handbook of Magma Functions. Department of Mathematics, University of Sydney. J. J. Cannon (1984). An introduction to the group theory language CAYLEY. Computational
Group Theory (M. Atkinson and eds), Academic Press, London. J. H. Conway and et al (1985). Atlas of Finite Groups. Oxford University Press, Oxford. B. Fischer (1991). Clifford-matrices. Progr. Math. \textbf{95}, Michler G.O. and Ringel C.(eds), Birkhauser, Basel. , 1-16 D. Gorenstein (1968). Finite Groups. Harper and Row Publishers, New York. I. M. Isaacs (1976). Character Theory of Finite Groups. Academic Press, San Diego. G. Karpilovsky (1992). Group Representations: Introduction to Group Representations and Characters. North - Holland Mathematics Studies 175, Amsterdam. 1 Part B J. Moori (1981). On certain groups associated with the smallest Fischer group. J. London Math. Soc. (2). 23, 61-67 J. Moori (1975). On the Groups G^+ and \overline{G} of the forms 2^{10}{:}M_{22} and 2^{10}{:}\overline{M}_{22}. PhD thesis, University of Birmingham. J. Moori and Z. E. Mpono (2000). Fischer-Clifford matrices and the character table of a maximal subgroup of \overline{F}_{22}. Intl. J. Maths. Game Theory and Algebra. 10, 1-12 Z. Mpono (1998). Fischer-Clifford Theory and Character Tables of Group
Extensions. PhD Thesis, University of Natal. A. L. Prins (2011). Fischer-Clifford Matrices and Character Tables of Inertia Groups of Maximal Subgroups of Finite Simple Groups of Extension Type. PhD Thesis, University of the Western Cape. A. L. Prins and R. L. Fray (2013). The Fischer-Clifford matrices of the inertia group 2^7{:}O^{-}(6,2) of a maximal subgroup 2^7{:}SP(6,2) in Sp_8(2). Int. J. Group Theory. 2 (3), 19-38 A. L. Prins and R. L. Fray On the inertia groups of the maximal subgroup 2^7{:}SP(6,2) in Aut(Fi_{22}). to appear in Quaestiones Mathematicae. The GAP Group (2013). GAP--Groups, Algorithms, and Programming. Version 4.6.3; {http://www.gap-system.org}. N. S. Whitley (1994). Fischer Matrices and Character Tables of Group
Extensions. MSc Thesis, University of Natal. R. A. Wilson and et al. ATLAS of Finite Group Representations. http://brauer.maths.qmul.ac.uk/Atlas/v3/. K. Zimba (2005). Fischer-Clifford Matrices of the Generalized Symmetric Group
and some Associated Groups. PhD Thesis, University of KwaZulu Natal.
Prins, A., & Fray, R. (2014). The Fischer-Clifford matrices of an extension group of the form 27:(27:S6). International Journal of Group Theory, 3(2), 21-39. doi: 10.22108/ijgt.2014.3659
MLA
Abraham Love Prins; Richard Llewellyn Fray. "The Fischer-Clifford matrices of an extension group of the form 27:(27:S6)". International Journal of Group Theory, 3, 2, 2014, 21-39. doi: 10.22108/ijgt.2014.3659
HARVARD
Prins, A., Fray, R. (2014). 'The Fischer-Clifford matrices of an extension group of the form 27:(27:S6)', International Journal of Group Theory, 3(2), pp. 21-39. doi: 10.22108/ijgt.2014.3659
VANCOUVER
Prins, A., Fray, R. The Fischer-Clifford matrices of an extension group of the form 27:(27:S6). International Journal of Group Theory, 2014; 3(2): 21-39. doi: 10.22108/ijgt.2014.3659