Units in $F_{2^k}D_{2n}$

Document Type : Research Paper


1 Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016 India

2 Indian Institute of Technology Delhi Hauz Khas, New Delhi India


Let $\mathbb{F}_{q}D_{2n}$ be the group algebra of $D_{2n}$‎, ‎the dihedral group of order $2n$‎, ‎over $\mathbb{F}_{q}=GF(q)$‎. ‎In this paper‎, ‎we establish the structure of $\mathcal{U}(\mathbb{F}_{2^{k}}D_{2n})$‎, ‎the unit group of $\mathbb{F}_{2^{k}}D_{2n}$ and that of its normalized unitary subgroup $V_{*}(\mathbb{F}_{2^{k}}D_{2n})$ with respect to canonical involution $*$ when $n$ is odd‎.


Main Subjects

A. A. Bovdi and L. Erdei (1996). Unitary units in the modular group algebra of groups of order 16. Technical Reports Debrecen. 96 (4), 57-72 V. A. Bovdi and L. G. Kovacs (1994). Unitary units in modular group algebras. Manuscr. Math.. 84 (1), 57-72 V. Bovdi and A. L. Rosa (2000). On the order of the unitary subgroup of a modular group algebra. Comm. Algebra. 28 (4), 1897-1905 L. Creedon and J. Gildea (2009). Unitary units of the group algebra F2kQ8. Internat. J. Algebra Comput.. 19 (2), 283-289 K. Kaur and M. Khan (2014). Units in F2D2p. J. Algebra Appl., http://dx.doi.org/10.1142/S0219498813500904. 13 (2) R. Lidl and H. Niederreiter (2000). Finite fields. Cambridge University Press, Cambridge. D. J. S. Robinson (1996). A course in the theory of groups. Graduate Texts, Springer-Verlag, New York. 80