On the free profinite products of profinite groups with commuting subgroups

Document Type : Research Paper

Authors

1 Ecole Normale Suprieure The University of Maroua

2 The University of Ngaoundere

Abstract

In this paper we introduce the construction of free profinite products of profinite groups with commuting subgroups‎. ‎We study a particular case‎: ‎the proper free profinite products of profinite groups with commuting subgroups‎. ‎We prove some conditions for a free profinite product of profinite groups with commuting subgroups to be proper‎. ‎We derive some consequences‎. ‎We also compute profinite completions of free products of (abstract) groups with commuting subgroups‎.

Keywords

Main Subjects


[1] G. Baumslag, On the residual niteness of generalised free pro ducts of nilp otent groups, Trans. Amer. Math. Soc.,106 (1963) 193-209.

[2] B. Baumslag and M. Tretkoff, Residually nite HNN-extensions, Comm. Algebra, 6 (1978) 179-194.

[3] T. Coulb ois, Proprietes de Ribes-Zalesskii, topologie pro nie, produit libre et generalisations, These deDo ctorat,Universite Paris VII, 2000.

[4] G. Kim and J. McCarron, On amalgamated free pro ducts of residually $p$- nite groups, J. Algebra, 162 (1993) 1-11.

[5] G. Kim and J. McCarron, Some residually p - nite one relator groups, J. Algebra, 169 (1994) 817-826.

[6] G. Kim and C. Y. Tang, On generalized free pro ducts of residually nite p -groups, J. Algebra , 201 (1998) 317-327.

[7] E. D. Loginova, Residual niteness of the free pro duct of two groups with commuting subgroups, translation in Siberian Math. J., 40 (1999) 341-350.

[8] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Reprint of the 1977 edition. Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[9] W. Magnus, A. Karass and D. Solitar, Combinatorial Group Theory , New York, London, Sydney: John Wiley and Sons, Inc., 1966.

[10] S. Meskin, Nonresidually nite one-relator groups, Trans. Amer. Math. Soc., 164 (1972) 105-114.

[11] D. I. Moldavanskii, $p$- nite residuality of HNN-extensions, (in Russian), Viesnik Ivanov. Gos. Univ., 3 (2000) 129-140.

[12] E. Raptis and D. Varsos, Residual prop erties of HNN-extensions with base group an ab elian group, J. Pure Appl. Algebra, 59 (1989) 285-290.

[13] L. Rib es, Amalgamated pro ducts of pro nite groups: counterexamples, Proc. Amer. Math. Soc., 37 (1973) 413-416.

[14] L. Rib es, On amalgamated pro ducts of pro nite groups, Math. Z., 123 (1971) 357-364.

[15] L. Rib es and P. A. Zalesskii, Pro nite Groups, Springer-Verlag, Berlin, 2010.

[16] M. Shirvani, On residually nite HNN-extensions, Arch. Math. (Basel), 44 (1985) 110-115.

[17] M. Shirvani, A converse to a residual niteness theorem of G. Baumslag, Proc. Amer. Math. Soc., 104 (1988) 703-706.

[18] J. P. Serre, Cohomologie Galoisienne , 3ieme ed., Lecture Notes in Math., no. 5, Springer-Verlag, Berlin and New York, 1965.

[19] D. Tieudjo, Ro ot-class residuality of some free constructions, JP J. Algebra Number Theory Appl., 18 (2010) 125-143.

[20] J. S. Wilson, Pro nite Groups, Clarendon Press, Oxford, 1998.