[1] J. Ballantyne, On lo cal fusion graphs of nite Coxeter groups, J. Group Theory, 16 (2013) 595-617.
[2] J. Ballantyne, N. Greer and P. Rowley, Lo cal Fusion Graphs for Symmetric Groups, J. Group Theory, 16 (2013) 35-49.
[3] C. Bates, D. Bundy, S. Hart and P. Rowley, A Note on Commuting Graphs for Symmetric Groups, Electron. J.
Combin., 16 (2009) pp. 13.
[4] C. Bates, D. Bundy, S. Perkins and P. Rowley, Commuting involution graphs for symmetric groups, J. Algebra, 266 (2003) 133-153.
[5] C. Bates, D. Bundy, S. Perkins and P. Rowley, Commuting involution graphs for nite Coxeter groups, J. Group Theory, 6 (2003) 461-476.
[6] C. Bates, D. Bundy, S. Perkins and P. Rowley, Commuting Involution Graphs in Sp ecial Linear Groups, Comm. Algebra, 32 (2004) 4179-4196.
[7] J. R. Britnell and N. Gill, Perfect commuting graphs, ArXiv e-prints, 1309.2237, 2013.
[8] K. S. Brown, Euler Characteristics of Groups: The p -Fractional Part, Invent. Math., 29 (1975) 1-5.
[9] K. S. Brown, High dimensional cohomology of discrete groups, Proc. Nat. Acad. Sci. U. S. A., 73 (1976) 1795-1797.
[10] Y. Drozd and R. V. Skuratovskii, Generators and Relations for Wreath Pro ducts, Ukrainian Math. J., 60 (2008) 1168-1171.
[11] A. Everett, Commuting Involution Graphs for 3-Dimensional Unitary Groups, Electron. J. Combin., 18 (2011) 11 pp.
[12] I. Kra and S. Simanca, On circulant matrices, Notices Amer. Math. Soc., 59 (2012) 368-377.
[13] G. L. Morgan and C. W. Parker, The diameter of the commuting graph of a nite group with trivial centre, J. Algebra, 393 (2013) 41-59.
[14] C. W. Parker, The commuting graph of a soluble group, Bul l. Lond. Math. Soc., 45 (2013) 839-848.
[15] S. Perkins, Commuting involution graphs for An , Arch. Math. (Basel), 86 (2006) 16-25.
[16] D. Quillen, Homotopy Prop erties of the Poset of Nontrivial p-Subgroups of a Group, Adv. in Math., 28 (1978) 101-128.
[17] M. A. Ronan, Duality for Presheaves on Chamb er Systems and a Related Chain Complex, J. Algebra, 121 (1989) 263-274.
[18] M. A. Ronan and S. D. Smith, Sheaves on Buildings and Mo dular Representations of Chevalley Groups, J. Algebra, 96 (1985) 319-346.
[19] M. A. Ronan and S. D. Smith, Universal Presheaves on Group Geometries and Mo dular Representations, J. Algebra, 102 (1986) 133-154.
[20] M. A. Ronan and S. D. Smith, Computation of 2-mo dular sheaves and representations for L4 (2); A7; 3 S6; and M24, Comm. Algebra, 17 (1989) 1199-1237.
[21] P. Rowley and D. Ward, On -Pro duct Involution Graphs in Symmetric Groups, MIMS ePrint , 2014.
[22] M. R. Salarian, Characterizing some small simple groups by their commuting involution graphs, Southeast Asian Bul l. Math., 35 (2011) 467-474.
[23] J. Shareshian, Hyp ergraph matching complexes and Quillen complexes of symmetric groups, J. Combin. Theory Ser. A, 106 (2004) 299-314.