[1] K. Ahmadidelir, C. M. Campbell and H. Doostie, Almost Commutative Semigroups, Algebra Colloq., 18 (2011) 881-888.
[2] R. H. Bruck, A survey of binary systems, Springer Verlag, Berlin-Göttingen-Heidelberg, 1958.
[3] O. Chein, Moufang loops of small order. I, Trans. Amer. Math. Soc., 188 (1974) 31-51.
[4] O. Chein, Moufang loops of small order, Mem. Amer. Math. Soc., 13 (1978) iv+131 pp.
[5] O. Chein and A. Rajah, Possible orders of non--associative Moufang loops, Comment. Math. Univ. Carolin., 41 (2000) 237-244.
[6] A. Drapal, How far apart can the group multiplication tables be?, European J. Combin., 13 (1992) 335-343.
[7] A. Drapal and P. Vojtvechovsky, Moufang loops that share associator and three quarters of their mulyiplication tables, Rocky Mountain J. Math., 36 (2006) 425-455.
[8] S. M. Gagola III, Hall's theorem for Moufang loops, J. Algebra, 323, no. 12 (2010) 3252-3262.
[9] The GAP group, emphGAP- Groups, Algorithms and Programming, Aachen, St. Andrews Version 4.7.2, (2013), (http://www.gap--system.org).
[10] E. G. Goodaire, S. May and M. Raman, The Moufang Loops of Order Less Than $64$}, Nova Science Publishers, Inc., Commack, NY, 1999.
[11] W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973) 1031-1034.
[12] A. N. Grishkov and A. V. Zavarnitsine, Lagrange's theorem for Moufang loops, Math. Proc. Cambridge Philos. Soc., 139, (2005) 41-57.
[13] A. N. Grishkov and A. V. Zavarnitsine, Sylow's theorem for Moufang loops, J. Algebra, 321 (2009) 1813-1825.
[14] P. Lescot, Isoclinism classes and comutativity degree of finite groups, J. Algebra, 177 (1995) 847-869.
[15] F. Leong and A. Rajah, Moufang loops of odd order $p^a q_1^2...q_n^2r_1...r_m$, J. Algebra, 190 (1997) 474-486.
[16] D. MacHale, Commutativity in finite rings, Amer. Math. Monthly, 83 (1975) 30-32.
[17]G. P. Nagy and M. Valsecchi, On nilpotent Moufang loops with central associators, J. Algebra, 307 (2007) 547-567.
[18] G. P. Nagy and P. Vojtvechovsky, The Moufang loops of order 64 and 81, J. Symbolic Comput., 42 (2007) 871-883.
[19] G. P. Nagy and P. Vojtvechovsky, LOOPS Version 2.1.3, Package for GAP 4.4.12., Available at http://www.math.du.edu/loops.
[20] H. O. Pflugfelder, Quasigroups and loops: Introduction, Heldermann Verlag, Berlin, 1990.
[21] M. C. Slattery and A. L. Zenisek, Moufang loops of order 243, Comment. Math. Univ. Carolin., 53 (2012) 423-428.