A note on the coprime graph of a group

Document Type : Research Paper

Author

Department of Basic Sciences, University of Jiroft, Jiroft, Kerman, Iran

Abstract

‎In this paper we study the coprime graph of a group $G$‎. ‎The‎ ‎coprime graph of a group $G$‎, ‎denoted by $\Gamma_G$‎, ‎is a graph‎ ‎whose vertices are elements of $G$ and two distinct vertices $x$‎ ‎and $y$ are adjacent if and only if $(|x|,|y|)=1$‎. ‎In this paper‎, ‎we ‎show that $\chi(\Gamma_G)=\omega(\Gamma_G).$ We classify all the‎ ‎groups which $\Gamma_G$ is a complete $r-$partite graph or a‎ ‎planar graph‎. ‎Also we study the automorphism group of‎ ‎$\Gamma_G$‎.

Keywords

Main Subjects


[1] S. Akbari and A. Mohammadian, On zero-divisor graphs of nite rings, J. Algebra, 314 (2007) 168-184.

[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999) 434-447.

[3] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988) 208-226.

[4] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co, Inc., New York, 1976.

[5] Y. Chen, On Thompson's conjecture, J. Algebra, 185 (1996) 184-193.

[6] J. A. Gallian, Contemporary Abstract Algebra , D. C. Heath and company, 1994.

[7] B. Hupp ert, Character Theory of Finite Groups, De Gruyter Exp ositions in Mathematics, 25, Walter de Gruyter Co., Berlin, 1998.

[8] D. Lu and T. Wu, On bipartite zero-divisor graphs, Discrete Math., 309 (2009) 755-762.

[9] X. Ma, H. Wei and L. Yang, The coprime graph of a group, Int. J. Group Theory, 3 no. 3 (2014) 13-23.

[10] S. P. Redmond, On zero-divisor graphs of small nite commutative rings, Discrete Math., 307 (2007) 1155-1166.

[11] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra, 39 (2011) 2338-2348.

[12] J. S. Williams, Prime graph comp onents of nite groups, J. Algebra, 69 (1981) 487-513.

[13] T. Wu, Q. Liu and L. Chen, Zero-divisor semigroups and re nements of a star graph, Discrete Math., 309 (2009) 2510-2518.